Get started Open in app

590K Followers

You have 2 free member-only stories left this month. Sign up for Medium and get an extra one

All Pandas groupby() You Should Know for
Grouping Data and Performing Operations

Pandas tips and tricks to help you get started with data analysis

TN .
@ B. Chen Mar 12 - 8 min read *
N>/

Photo by AbsolutVision on Unsplash

https://towardsdatascience.com/?source=post_page-----2a8ec1327b5--------------------------------
https://medium.com/m/signin?actionUrl=https%3A%2F%2Fmedium.com%2F_%2Fsubscribe%2Fcollection%2Ftowards-data-science&operation=register&redirect=https%3A%2F%2Ftowardsdatascience.com%2Fall-pandas-groupby-you-should-know-for-grouping-data-and-performing-operations-2a8ec1327b5&collection=Towards%20Data%20Science&collectionId=7f60cf5620c9&source=post_page-----2a8ec1327b5---------------------follow_header-----------
https://towardsdatascience.com/followers?source=post_page-----2a8ec1327b5--------------------------------
https://bindichen.medium.com/?source=post_page-----2a8ec1327b5--------------------------------
https://bindichen.medium.com/?source=post_page-----2a8ec1327b5--------------------------------
https://towardsdatascience.com/all-pandas-groupby-you-should-know-for-grouping-data-and-performing-operations-2a8ec1327b5?source=post_page-----2a8ec1327b5--------------------------------
https://unsplash.com/@freegraphictoday?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://towardsdatascience.com/s/photos/grouping-data?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://medium.com/m/signin?operation=register&redirect=https%3A%2F%2Ftowardsdatascience.com%2Fall-pandas-groupby-you-should-know-for-grouping-data-and-performing-operations-2a8ec1327b5&source=-----2a8ec1327b5---------------------smart_meter-----------
https://medium.com/m/signin?operation=register&redirect=https%3A%2F%2Ftowardsdatascience.com%2Fall-pandas-groupby-you-should-know-for-grouping-data-and-performing-operations-2a8ec1327b5&source=post_page-----2a8ec1327b5---------------------nav_reg-----------
https://rsci.app.link/?%24canonical_url=https%3A%2F%2Fmedium.com%2Fp%2F2a8ec1327b5&~feature=LoOpenInAppButton&~channel=ShowPostUnderCollection&~stage=mobileNavBar&source=post_page-----2a8ec1327b5--------------------------------
https://medium.com/?source=post_page-----2a8ec1327b5--------------------------------

In exploratory data analysis, we often would like to analyze data by some categories.

In SQL, the GROUP BY statement groups row that has the same category values into
summary rows. In Pandas, SQI's GROUP BY operation is performed using the similarly
named groupby() method. Pandas’ groupby() allows us to split data into separate

groups to perform computations for better analysis.

In this article, you’ll learn the “group by” process (split-apply-combine) and how to use
Pandas’s groupby() function to group data and perform operations. This article is

structured as follows:

1. What is Pandas groupby() and how to access groups information?
2. The “group by” process: split-apply-combine

3. Aggregation

4. Transformation

5. Filtration

6. Grouping by multiple categories

7. Resetting index with as_index

8. Handling missing values

For demonstration, we will use the Titanic dataset available on Kaggle.

df = pd.read_csv('data/titanic/train.csv')

df.head()
| Passengerld Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked |
0 493 0 1 Molson, Mr. Harry Markland male 55.0 0 0 113787 30.5000 C30 S
1 53 1 1 Harper, Mrs. Henry Sleeper (Myna Haxtun) female 49.0 1 0 PC17572 76.7292 D33 C
2 388 1 2 Buss, Miss. Kate female 36.0 0 0 27849 13.0000 NaN S
3 192 0 2 Carbines, Mr. William male 19.0 0 0 28424 13.0000 NaN S
4 687 0 3 Panula, Mr. Jaako Arnold male 14.0 4 1 3101295 39.6875 NaN S

Titanic dataset (image by author)

Please check out Notebook for the source code.

https://www.kaggle.com/c/titanic/overview
https://github.com/BindiChen/machine-learning/blob/master/data-analysis/032-pandas-groupby/pandas-groupby.ipynb

1. What is Pandas groupby() and how to access groups
information?

The role of groupby() is anytime we want to analyze data by some categories. The

simplest call must have a column name. In our example, let’s use the Sex column.

df_groupby_sex = df.groupby('Sex")

The statement literally means we would like to analyze our data by different Sex

values. By calling the type() function on the result, we can see that it returns a

DataFrameGroupBy object.

>>> type(df_groupby_sex)

pandas.core.groupby.generic.DataFrameGroupBy

The groupby() function returns a DataFrameGroupBy object but essentially

describes how the rows of the original dataset have been split. There are some

attributes and methods available for us to access groups information

We can use ngroups attribute to get the number of groups

>>> df_groupby_sex.ngroups

2

Use groups attribute to get groups object. Those integer numbers in the list are the

row number.

>>> df_groupby_sex.groups

{'female': [1, 2, 5, 8, 10, 21, 22, 25, 26, 27, 36, 41, 44, 47, 51,
58, 60, 65, 70, 71, 72, 76, 77, 78, 80, 87, 88, 93, 94, 95, 100,

102, 104, 105, 109, 113, 116, 119, 120, 121, 123, 129, 134, 138,
144, 146, 147, ...], 'male': [0, 3, 4, ...]}

We can use size() method to compute and display group sizes.

>>> df_groupby_sex.size()

Sex
female 256
male 456

dtype: int64

To preview groups, we can call first() or last() to preview the result with the first

or last entry.

df_groupby_sex.first()

df_groupby_sex.last()

Passengerld Survived Pclass Name Age SibSp Parch Ticket Fare Cabin Embarked !

Sex i

female 53 1 1 Harper, Mrs. Henry Sleeper (Myna Haxtun) 49.0 1 0 PC17572 76.7292 D33 C E

male 493 0 1 Molson, Mr. Harry Markland 55.0 0 0 113787 30.5000 C30 S i
"""" Passengerld Survived Pclass ~~ Name Age SibSp Parch Ticket Fare Cabin Embarked |
Sex i
female 859 1 3 Baclini, Mrs. Solomon (Latifa Qurban) 24.0 0 3 2666 19.2583 B57 B59 B63 B66 C E
male 476 0 1 Clifford, Mr. George Quincy 35.0 0 0 110465 52.0000 A4 S i

(image by author)

We can use get_group() method to retrieve one of the created groups

df_female = df_groupby_sex.get_group('female')
df_female.head()

Passengerld Survived Pclass Name Age SibSp Parch Ticket Fare Cabin
53 1 1 Harper, Mrs. Henry Sleeper (Myna Haxtun) 49.0 1 0 PC 17572 76.7292 D33

388 1 2 Buss, Miss. Kate 36.0 0 0 27849 13.0000 NaN

16 1 2 Hewlett, Mrs. (Mary D Kingcome) 55.0 0 0 248706 16.0000 NaN

168 0 3 Skoog, Mrs. William (Anna Bernhardina Karlsson) 45.0 1 4 347088 27.9000 NaN

541 1 1 Crosby, Miss. Harriet R 36.0 0 2 WE/P 5735 71.0000 B22

(image by author)

2. The “group by” process: split-apply-combine
Generally speaking, “group by” is referring to a process involving one or more of the

following steps:

(1) Splitting the data into groups. (2). Applying a function to each group
independently, (3) Combining the results into a data structure.

Out of these, Pandas groupby() is widely used for the split step and it’s the most
straightforward. In fact, in many situations, we may wish to do something with

those groups. In the apply step, we might wish to do one of the following:

Aggregation: compute a summary statistic for each group. for example, sum,

mean, or count.

Transformation: perform some group-specific computations and return a like-
indexed object. For example, standardize data within a group or replacing missing

values within groups.

Filtration: discard some groups, according to a group-wise computation that
evaluates True or False . For example, discard data that belongs to groups with

only a few members or filter out data based on the group sum or mean.

By Pandas Official Tutorial: groupby: split-apply-combine [1]

In the following article, we will explore the real use cases of the “group by” process.

2. Aggregation
Once DataFrameGroupBy has been created, several methods are available to
perform a computation on the grouped data. An obvious one is to perform aggregation

- compute a summary statistic for each group.

https://pandas.pydata.org/pandas-docs/stable/user_guide/groupby.html

With column

To perform aggregation on a specific column

>>> df.groupby('Sex"').Age.max()

Sex
female 63.0
male 80.0

Name: Age, dtype: float64

With agg() method

There is a method called agg() and it allows us to specify multiple aggregation

functions at once.

df.groupby('Sex"').Age.agg(['max', 'min', 'count', 'median', 'mean’'])

max min count median mean
Sex
female 63.0 0.75 211 270 28.062796

male 80.0 0.42 355 28.0 30.804{300:

(image by author)

Sometimes, you may prefer to use a custom column name:

df.groupby('Sex"').Age.agg(
sex_max=('max"'),
sex_min=('min"),

sex_max sex_min ,
Sex

female 63.0 0.75

p—— on n nAD

LA b T Tl L T |

(image by author)

If you would like to use a custom aggregation function:

def categorize(x):
m = x.mean()
return True if m > 29 else False

df.groupby('Sex"').Age.agg(['max', 'mean', categorizel)

] max mean |categorize)
, Sex
. female 63.0 28.062796 | False

(image by author)

We can also use a lambda expression

df.groupby('Sex"').Age.agg(
['max', 'mean', lambda x: True if x.mean() > 50 else False]
)

max mean | <lambda_0> |:

I i
: Sex l E
 female 63.0 28.062796 False!!

]
' male 80.0 30.804000 True !

(image by author)

Without column

Turns out when writing a groupby() we don’t actually have to specify a column like
Age. Without a column, it will perform the aggregation across all of the numeric

columns

df.groupby('Sex"').mean()

Passengerld Survived Pclass Age SibSp Parch Fare |

Sex
female 425140625 0.753906 2.128906 28.062796 0.652344 0.652344 44835532
male 449.791667 0.188596 2.390351 30.804000 0.418860 0.236842 26.233971

(image by author)

Similarly, we can call agg() without a column.

df.groupby('Sex"').agg(['mean', 'median'])

' Passengerld Survived Pclass Age SibSp Parch Fare E
i mean median mean median mean median mean median mean median mean median mean median E
i Sex

i female 425140625 396.0 0.753906 1 2128906 2 28.062796 270 0.652344 0 0.652344 0 44.835532 2415 E
i male 449.791667 454.5 0.188596 0 2.390351 3 30.804000 28.0 0.418860 0 0.236842 0 26.23397 10.50 E

(image by author)

3. Transforming data

Transformation is a process in which we perform some group-specific computations
and return a like-indexed (same length) object. When looking for transforming data,

transform() and apply() are the most commonly used functions.

Let’s create a lambda expression for Standardization.

standardization = lambda x: (x — x.mean()) / x.std()

https://en.wikipedia.org/wiki/Feature_scaling#Standardization_(Z-score_Normalization)

To perform the standardization on Age column with transform()

df.groupby('Sex"').Age.transform(standardization)

0 1.630657
1 1.516751
2 0.574994

707 —-0.294321
708 NaN
709 0.956720
710 0.282784
711 NaN
Name: Age, Length: 712, dtype: float64

To perform the standardization on Age column using apply()

df.groupby('Sex"').Age.apply(standardization)

0 1.630657
1 1.516751
2 0.574994

707 -0.294321
708 NaN
709 0.956720
710 0.282784
711 NaN
Name: Age, Length: 712, dtype: float64

If you would like to learn more transform() and apply() , please check out:

When to use Pandas transform() function
Some of the most useful Pandas tricks

towardsdatascience.com

Introduction to Pandas apply, applymap and map

An intuitive Pandas tutorial for how to apply a function using apply()
and applymap(), and how to substitute value...

towardedatascience com

https://towardsdatascience.com/when-to-use-pandas-transform-function-df8861aa0dcf
https://towardsdatascience.com/introduction-to-pandas-apply-applymap-and-map-5d3e044e93ff

4. Filtration

Filtration is a process in which we discard some groups, according to a group-wise

computation that evaluates True or False.

Let’s take a look at how to discard data that belongs to groups with only a few

members.

First, we group the data by Cabin and take a quick look at the size for each group.

df.groupby('Cabin').size()

Cabin
A10
A14
Al16
A19
F2
F33
F4

G6
T

[

PNEREWN

Length: 128, dtype: int64

Now let’s filter data to return all passengers that lived in a cabin has = 4 people. To do

that, we use filter() method with a lambda expression.

df.groupby('Cabin').filter(lambda x:

Passengerld Survived Pclass

i 77 764
i 96 391
' 105 342
i 208 439
' 237 436
i 302 28
' 450 803

1

1

1

1

1

1

Carter, Mrs. William Ernest (Lucile Polk)
Carter, Mr. William Ernest

Fortune, Miss. Alice Elizabeth

Fortune, Mr. Mark

Carter, Miss. Lucile Polk

Fortune, Mr. Charles Alexander

Carter, Master. William Thornton Il

Fortune, Miss. Mabel Helen

len(x) >= 4)
Sex Age SibSp
female 36.0 1
male 36.0 1
female 24.0 3
male 64.0 1
female 14.0 1
male 19.0 3
male 11.0 1
female 23.0 3

Parch

113760
113760
19950
19950
113760
19950
113760

263.0
263.0

B96 B98

B9O6 B98

C23C25C27
C23C25C27

R |
120.0 L B96 B98

263.0

€23 C25 C27

12&0] Bgsaggj

263.0

C23C25C27

https://towardsdatascience.com/introduction-to-pandas-apply-applymap-and-map-5d3e044e93ff

(image by author)

6. Grouping by multiple categories

So far, we have been passing a single label to groupby() to group data by one column.

Instead of a label, we can also pass a list of labels to work with multiple grouping.

Creating a subset

df_subset = df.locl:, ['Sex', 'Pclass', 'Age', 'Fare'l]

Group by multiple categories

df_subset.groupby(['Sex', 'Pclass']).mean()
T Age Fare’
E Sex Pclass E
! female 1| 33.873239 104.311563
2 28647541 21.658730
3| 22.389241 15.650187
| male 1 42.006329 70.611438
2 | 290946667 19.463516
3 26.720995 12.488267

(image by author)

7. Resetting index with as_index

Grouping by multiple categories will result in a Multilndex DataFrame. However, it is
not practical to have Sex and Pclass columns as the index (See image above) when

we need to perform some data analysis.

We can call the reset_index() method on the DataFrame to reset them and use the

default O-based integer index instead.

df_groupby_multi =

Resetting index
df_groupby_multi.reset_index()

Sex Pclass

E female

male

1 33.873239
2 28.647541
3 22.389241
1 42.006329
2 29946667

3 26.720995

104.311563 :

21.658730

subset.groupby(['Sex"',

A 4

15.650187 :
70.6114355
19.4635165

12.488267 .

(image by author)

'"Pclass']).mean()

Sex Pclass
female 1
female 2
female 3

male 1

male 2

male 3

33.873239
28.647541
22.389241
42.006329
29.946667

26.720995

But there is a more effective way using the as_index argument. The argument is to

configure whether the index is group labels or not. If it is set to False, the group

labels are represented as columns instead of index.

subset.gro

upby(['Sex",

Sex Pclass
female 1
female 2
female 3

male 1

male 2

male 3

33.873239
28.647541
22.389241
42.006329
29.946667

26.720995

(image by author)

'Pclass'], as_index=False).mean()

104.311563
21.658730
15.650187
70.611438
19.463516

12.488267

104.311563 |
21658730 |
156501875
70.611438 |
1&4635165

12.488267 E

8. Handling missing values

The groupby() function ignores the missing values by default. Let’s first create some

missing values in the Sex column.

Creating missing value in the Sex column
subset.iloc[80:100, 0] = np.nan

Validating the missing values
subset.isna().sum()

Sex 20
Pclass 0
Age 146
Fare 0

dtype: int64

When calculating the mean value for each category in the Sex column, we won’t get

any information about the missing values.

The groupby function ignores the missing values by default.
subset.groupby(['Sex', 'Pclass']).mean()

2 29.287671 19.300104,

| Age Fare |
E Sex Pclass E
female 1 33.928571 104.448418
2 28.483051 21.381148
i 3 22904605 15.675305 i
male 1 42182432 66.485236

3 26641726 12.595923

(image by author)

In some cases, we also need to get an overview of the missing values. We can set the

dropna argument to False to include missing values.

subset.groupby(['Sex', 'Pclass'], dropna=False).mean()

2 43.750000 28.062500

i Age Fare E
i Sex Pclass i
i female 1 33.928571 104.448418 i
i 2 28.483051 21.381148 i
i 3 22904605 15.675305 E
' male 1 42182432 66.485236
i 2 29.287671 19.300104 i
i 3 26.641726 12.595923 i
i NaN 1 37.833333 128.111314

3 21.500000 10.005556:

(image by author)

Conclusion
Pandas groupby() function is one of the most widely used functions in data analysis. It

is really important because of its ability to aggregate, transform and filter data in each

group.

I hope this article will help you to save time in learning Pandas. I recommend you to

check out the documentation for the groupby() API and to know about other things

you can do.

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.groupby.html

Thanks for reading. Please check out the notebook for the source code and stay tuned

if you are interested in the practical aspect of machine learning.

You may be interested in some of my other Pandas articles:

All Pandas json_normalize()_you should know for flattening JSON

Using Pandas method chaining to improve code readability

How to do a Custom Sort on Pandas DataFrame

All the Pandas shift()_you should know for data analysis

When to use Pandas transform() function

Pandas concat()_tricks you should know

Difference between apply()_and transform() in Pandas

All the Pandas merge()_you should know

Working with datetime in Pandas DataFrame

Pandas read csv()_tricks you should know

4 tricks you should know to parse date columns with Pandas read csv()

More tutorials can be found on my Github

References

[1] Pandas Official Tutorial: Group by: split-apply-combine

Sign up for The Variable

By Towards Data Science

Every Thursday, the Variable delivers the very best of Towards Data Science: from hands-on tutorials
and cutting-edge research to original features you don't want to miss. Take a look.

C)

https://github.com/BindiChen/machine-learning/blob/master/data-analysis/032-pandas-groupby/pandas-groupby.ipynb
https://towardsdatascience.com/all-pandas-json-normalize-you-should-know-for-flattening-json-13eae1dfb7dd
https://medium.com/@bindiatwork/using-pandas-method-chaining-to-improve-code-readability-d8517c5626ac
https://towardsdatascience.com/how-to-do-a-custom-sort-on-pandas-dataframe-ac18e7ea5320
https://towardsdatascience.com/all-the-pandas-shift-you-should-know-for-data-analysis-791c1692b5e
https://towardsdatascience.com/when-to-use-pandas-transform-function-df8861aa0dcf
https://towardsdatascience.com/pandas-concat-tricks-you-should-know-to-speed-up-your-data-analysis-cd3d4fdfe6dd
https://medium.com/@bindiatwork/difference-between-apply-and-transform-in-pandas-242e5cf32705
https://towardsdatascience.com/all-the-pandas-merge-you-should-know-for-combining-datasets-526b9ecaf184
https://towardsdatascience.com/working-with-datetime-in-pandas-dataframe-663f7af6c587
https://medium.com/@bindiatwork/all-the-pandas-read-csv-you-should-know-to-speed-up-your-data-analysis-1e16fe1039f3
https://towardsdatascience.com/4-tricks-you-should-know-to-parse-date-columns-with-pandas-read-csv-27355bb2ad0e
https://github.com/BindiChen/machine-learning
https://pandas.pydata.org/pandas-docs/stable/user_guide/groupby.html
https://medium.com/towards-data-science/newsletters/the-variable?source=newsletter_v3_promo--------------------------newsletter_v3_promo-----------
https://medium.com/m/signin?actionUrl=%2F_%2Fapi%2Fsubscriptions%2Fnewsletters%2Fd6fe9076899&operation=register&redirect=https%3A%2F%2Fmedium.com%2Ftowards-data-science%2Fnewsletters%2Fthe-variable&collection=Towards%20Data%20Science&collectionId=7f60cf5620c9&newsletterV3=The%20Variable&newsletterV3Id=d6fe9076899&user=Ludovic%20Benistant&userId=895063a310f4&source=newsletter_v3_promo--------------------------newsletter_v3_promo-----------

Python Pandas Data Analysis Data Science Group By

Download on the GETITON
@& App Store " Google Play

https://towardsdatascience.com/tagged/python
https://towardsdatascience.com/tagged/pandas
https://towardsdatascience.com/tagged/data-analysis
https://towardsdatascience.com/tagged/data-science
https://towardsdatascience.com/tagged/group-by
https://medium.com/?source=post_page-----2a8ec1327b5--------------------------------
https://medium.com/about?autoplay=1&source=post_page-----2a8ec1327b5--------------------------------
https://medium.com/new-story?source=post_page-----2a8ec1327b5--------------------------------
https://help.medium.com/hc/en-us?source=post_page-----2a8ec1327b5--------------------------------
https://policy.medium.com/medium-terms-of-service-9db0094a1e0f?source=post_page-----2a8ec1327b5--------------------------------
https://itunes.apple.com/app/medium-everyones-stories/id828256236?pt=698524&mt=8&ct=post_page&source=post_page-----2a8ec1327b5--------------------------------
https://play.google.com/store/apps/details?id=com.medium.reader&source=post_page-----2a8ec1327b5--------------------------------

