
      Eigenvalues and Eigenvectors

The product Ax of a matrix A ∈ Mn×n(R) and an n-vector x is itself an n-vector. Of 
particular interest in many settings is the following question:

For a given matrix A, what are the vectors x for which the product Ax is a 
scalar multiple of x? That is, what vectors x satisfy the equation

Ax = λx

for some scalar λ?

It should immediately be clear that, no matter what A and λ are, the vector x = 0 (that is, the 
vector whose elements are all zero) satisfies this equation. With such a trivial answer, we 
might ask the question again in another way:

For a given matrix A, what are the nonzero vectors x that satisfy the equation

Ax = λx

for some scalar λ?

To answer this question, we first perform some algebraic manipulations upon the equation
Ax = λx. We note first that, if I = In (the n×n multiplicative identity inMn×n(R)), then
we can write

Ax = λx ⇔ Ax− λx = 0

⇔ Ax− λIx = 0

⇔ (A− λI)x = 0.

Remember that we are looking for nonzero x that satisfy this last equation. But A− λI is
an n×n matrix and, should its determinant be nonzero, this last equation will have exactly
one solution, namely x = 0. Thus our question above has the following answer:

The equation Ax = λx has nonzero solutions for the vector x if and only if the
matrix A− λI has zero determinant.

As we will see in the examples below, for a given matrix A there are only a few special values
of the scalar λ for which A − λI will have zero determinant, and these special values are
called the eigenvalues of the matrix A. Based upon the answer to our question, it seems we
must first be able to find the eigenvalues λ1, λ2, . . . λn of A and then see about solving the
individual equations Ax = λix for each i = 1, . . . , n.

Example: Find the eigenvalues of the matrix A =

[
2 2
5 −1

]
.
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The eigenvalues are those λ for which det(A− λI)= 0. Now

det(A− λI) = det

([
2 2
5 −1

]
− λ

[
1 0
0 1

])
= det

([
2 2
5 −1

]
−

[
λ 0
0 λ

])
=

∣∣∣∣ 2− λ 2
5 −1− λ

∣∣∣∣
= (2− λ)(−1− λ)− 10

= λ2 − λ− 12.

The eigenvalues of A are the solutions of the quadratic equation λ2 − λ− 12 = 0,
namely λ1 = −3 and λ2 = 4.

As we have discussed, if det(A − λI) = 0 then the equation (A − λI)x = b has either
no solutions or infinitely many. When we take b = 0 however, it is clear by the existence
of the solution x = 0 that there are infinitely many solutions (i.e., we may rule out the “no
solution” case). If we continue using the matrix A from the example above, we can expect
nonzero solutions x (infinitely many of them, in fact) of the equation Ax = λx precisely
when λ = −3 or λ = 4. Let us procede to characterize such solutions.

First, we work with λ = −3. The equation Ax = λx becomes Ax = −3x. Writing

x =

[
x1

x2

]
and using the matrix A from above, we have

Ax =

[
2 2
5 −1

] [
x1

x2

]
=

[
2x1 + 2x2

5x1 − x2

]
,

while

−3x =

[
−3x1

−3x2

]
.

Setting these equal, we get[
2x1 + 2x2

5x1 − x2

]
=

[
−3x1

−3x2

]
⇒ 2x1 + 2x2 = −3x1 and 5x1 − x2 = −3x2

⇒ 5x1 = −2x2

⇒ x1 = −2

5
x2.

This means that, while there are infinitely many nonzero solutions (solution vectors) of the
equation Ax = −3x, they all satisfy the condition that the first entry x1 is −2/5 times the
second entry x2. Thus all solutions of this equation can be characterized by[

2t
−5t

]
= t

[
2
−5

]
,
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where t is any real number. The nonzero vectors x that satisfy Ax = −3x are called
eigenvectors associated with the eigenvalue λ = −3. One such eigenvector is

u1 =

[
2
−5

]
and all other eigenvectors corresponding to the eigenvalue (−3) are simply scalar multiples
of u1 — that is, u1 spans this set of eigenvectors.

Similarly, we can find eigenvectors associated with the eigenvalue λ = 4 by solving
Ax = 4x:[

2x1 + 2x2

5x1 − x2

]
=

[
4x1

4x2

]
⇒ 2x1 + 2x2 = 4x1 and 5x1 − x2 = 4x2

⇒ x1 = x2.

Hence the set of eigenvectors associated with λ = 4 is spanned by

u2 =

[
1
1

]
.

Example: Find the eigenvalues and associated eigenvectors of the matrix

A =

 7 0 −3
−9 −2 3
18 0 −8

 .

First we compute det(A−λI) via a cofactor expansion along the second column:∣∣∣∣∣∣
7− λ 0 −3
−9 −2− λ 3
18 0 −8− λ

∣∣∣∣∣∣ = (−2− λ)(−1)4

∣∣∣∣ 7− λ −3
18 −8− λ

∣∣∣∣
= −(2 + λ)[(7− λ)(−8− λ) + 54]

= −(λ + 2)(λ2 + λ− 2)

= −(λ + 2)2(λ− 1).

Thus A has two distinct eigenvalues, λ1 = −2 and λ3 = 1. (Note that we might
say λ2 = −2, since, as a root, −2 has multiplicity two. This is why we labelled
the eigenvalue 1 as λ3.)

Now, to find the associated eigenvectors, we solve the equation (A− λjI)x = 0
for j = 1, 2, 3. Using the eigenvalue λ3 = 1, we have

(A− I)x =

 6x1 − 3x3

−9x1 − 3x2 + 3x3

18x1 − 9x3

 =

 0
0
0


⇒ x3 = 2x1 and x2 = x3 − 3x1

⇒ x3 = 2x1 and x2 = −x1.
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So the eigenvectors associated with λ3 = 1 are all scalar multiples of

u3 =

 1
−1
2

 .

Now, to find eigenvectors associated with λ1 = −2 we solve (A + 2I)x = 0. We
have

(A + 2I)x =

 9x1 − 3x3

−9x1 + 3x3

18x1 − 6x3

 =

 0
0
0


⇒ x3 = 3x1.

Something different happened here in that we acquired no information about x2.
In fact, we have found that x2 can be chosen arbitrarily, and independently of
x1 and x3 (whereas x3 cannot be chosen independently of x1). This allows us
to choose two linearly independent eigenvectors associated with the eigenvalue
λ = −2, such as u1 = (1, 0, 3) and u2 = (1, 1, 3). It is a fact that all other
eigenvectors associated with λ2 = −2 are in the span of these two; that is, all
others can be written as linear combinations c1u1 + c2u2 using an appropriate
choices of the constants c1 and c2.

Example: Find the eigenvalues and associated eigenvectors of the matrix

A =

[
−1 2
0 −1

]
.

We compute

det(A− λI) =

∣∣∣∣ −1− λ 2
0 −1− λ

∣∣∣∣
= (λ + 1)2.

Setting this equal to zero we get that λ = −1 is a (repeated) eigenvalue. To find
any associated eigenvectors we must solve for x = (x1, x2) so that (A + I)x = 0;
that is, [

0 2
0 0

] [
x1

x2

]
=

[
2x2

0

]
=

[
0
0

]
⇒ x2 = 0.

Thus, the eigenvectors corresponding to the eigenvalue λ = −1 are the vectors
whose second component is zero, which means that we are talking about all scalar
multiples of u = (1, 0).
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Notice that our work above shows that there are no eigenvectors associated with λ = −1
which are linearly independent of u. This may go against your intuition based upon the
results of the example before this one, where an eigenvalue of multiplicity two had two
linearly independent associated eigenvectors. Nevertheless, it is a (somewhat disparaging)
fact that eigenvalues can have fewer linearly independent eigenvectors than their multiplicity
suggests.

Example: Find the eigenvalues and associated eigenvectors of the matrix

A =

[
2 −1
1 2

]
.

We compute

det(A− λI) =

∣∣∣∣ 2− λ −1
1 2− λ

∣∣∣∣
= (λ− 2)2 + 1

= λ2 − 4λ + 5.

The roots of this polynomial are λ1 = 2+i and λ2 = 2−i; that is, the eigenvalues
are not real numbers. This is a common occurrence, and we can press on to
find the eigenvectors just as we have in the past with real eigenvalues. To find
eigenvectors associated with λ1 = 2 + i, we look for x satisfying

(A− (2 + i)I)x = 0 ⇒
[
−i −1
1 −i

] [
x1

x2

]
=

[
0
0

]
⇒

[
−ix1 − x2

x1 − ix2

]
=

[
0
0

]
⇒ x1 = ix2.

Thus all eigenvectors associated with λ1 = 2+i are scalar multiples of u1 = (i, 1).
Proceeding with λ2 = 2− i, we have

(A− (2− i)I)x = 0 ⇒
[

i −1
1 i

] [
x1

x2

]
=

[
0
0

]
⇒

[
ix1 − x2

x1 + ix2

]
=

[
0
0

]
⇒ x1 = −ix2,

which shows all eigenvectors associated with λ2 = 2− i to be scalar multiples of
u2 = (−i, 1).

Notice that u2, the eigenvector associated with the eigenvalue λ2 = 2 − i in the last
example, is the complex conjugate of u1, the eigenvector associated with the eigenvalue
λ1 = 2 + i. It is indeed a fact that, if A ∈ Mn×n(R) has a nonreal eigenvalue λ1 = λ + iµ
with corresponding eigenvector ξ1, then it also has eigenvalue λ2 = λ−iµ with corresponding
eigenvector ξ2 = ξ̄1.
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