Markbv Chains and Related
Stochastic Models

3.0 Intrbduction

Mathematical models are either deterministic or stochastic, and some settings can be repre-
sented with both deterministic and stochastic models. However, in many situations arising
in the social and life sciences, there are phenomena for which stochastic models are the
appropriate ones. In particular, in many circumnstances the behavior of plants, animals, and
people exhibits a degree of randomness that must be built mto the medels if predictions are
to correspond with ohservations. There are a great variety of stochastic models—that is, sets
of assumptions——that can be used to study these situations, and in this chapter we examine in
detail only one rather special case. This special case, Markov chains, has proved to be widely
applicable and a reasonably effective way of modeling many situations arising in the real
world. Bven in circumstances where detailed predictions based on the model differ from
observations, wé frequently gain insight into the process by studying these simple modeis.

We introduce the models studied in this chapter through a mumber of examples from
a varjety of settings. We then present the mathematical concepts and notation that we use
in analyzing these situations. Finally, we develop parts of the theory of the models for two
especially important subclasses of imodels. Throughout, we use the situations introduced n
Section 3.1 to illustrate and apply our methods.

3.1 Theé Setting and Some Examples

A basic assumption we make throughous this chapter is that all situations we stady have the

property that we observe a system sequentially through time, and that at each observation
the system can be determined to be in one of a finite rumber of states or o be satisfying a
firite number of conditions. This is an assumption about our ability to classify circumstances
or behaviors in useful ways. It is probably most effective to lllustrate the notion through
examples. ’ :

Animal Ranges

Consider a locafe consisting of rocks, scrub brush, open meadow, and a strsam {see Fig-
ure 3.1), and suppose that this locale is home for a small animal, say a marmot. We seek

106

3.1 The Setting and Some Examples 107

Figure 3.1

to model the movement of the marmet through time by noting its location at sequential
observations and then forming a mathematical system that represents these movements in
an appropriate way. ]

The use of a figure such as Figure 3.1 includes an assumption that the area can be
partitioned meaningfully into the subareas shown, and we also assume that when an ob-
servation is made, we can determine which subarea contains the marmot. These may seem
like natiral and perhaps trivial assumptions, but n many experimental situations they are
difficult to interpret or verify. For small aunimals, the task of keeping track of the creature
may be a challenge, and for large animals, for which the use of tracking collars may help
with the location problem, we may have the amimal moving through many different subareas
of its range. Also, if observations continue over an extended period of time, the nature of a
specific area may change. Brush may become meadow, or during a very wet season, a part
of the meadow may disappear into the stream. However, such issues are not a direct part of
our current model, and we do not consider them further.

‘We suppose, therefore, that the location of the marmot can be tracked through time and
thata sequence of observations can be represented as a sequence of locations and occupancy
times. For mstance, using the shorthand R, B, M, and S to denote the rocks, brush, meadow,
and stream, respectively, then we might represent a particular sequence of observations by
a sequence of letters (the locations) and numbers (the occupancy times):

R-342-B—-123—-R—-24-B-718—-M— ...

This sequence is to be interpreted as follows: When observations begin, the marmot is in the
rocks, and it remains there for 34.2 minutes, It then moves to the brush, where it remains for
12.3 minutes, after which it again moves to the rocks, wliere it remains for 2.4 minutes, and
so on, Although occupancy times play an important role in many models, we can illustrate
the basic ideas of the model-building and analysis process by concentrating on the locations
alone. Also, if {as is frequently the case) observations are made at discrete times, then the
observational data consist solely of a sequence of locations. Dependmg cn the criteria
used to make observations, locations may or may not appear successively in the sequernce.
Thus the sequence of locations given above might be represented as RBRBM - - -. In this
representation, juxtaposition denotes the resuits of successive observations. Tf the defimtion
of observation permits the marmot tc be in the same location on successive observaticns,
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then a sequence of locations such as RRRBMM S is possible. Here it might be suggestive
to write the result of the seven observations as

R R—R>B—>M-—->M—=375

When represented using juxtaposition or a diagram as above, 2 sequence of observations is
frequently referred to as a sample path.

In this example, we identify a “state of the system” with a location of the marmot.
From a biologicél perspective, the marmot may be sleeping or resting while m the rock
pile, feeding while in the meadow, and simply in transit while in the brush. In a more
complex sitnation where we have several marmots, we need a more elaborate definition
of the state of the systern. We must decide, for instance, whether we are going to keep
track of individual marmots. If we decide-to do so, then the state corresponding to marmot
number 1 being in the racks and marmot number 2 being in the brush is different from the
state corresponding to marmot number 1 being in the brush and marmot number 2 being in
the rocks. If we simply keep track of how many marmots are in the various locations, then
these two situations correspond to the same state.

If observations are made periodically in time, then the manmot can be in any two
locations on successive observations. If the time between successive observations is short
compared with the time it takes the marmot to move through a location, then it is possible for
the marmot to be observed either in the sare location or in adjacent locations on successive
observations. Sometimes the experiment is set up so that the marmot is observed each time
it moves from one location to another. In such cases, two successive observations must have
the marmot in different but adjacent locations. For each assumption about how observations
are made, we ha¥e a diagram similar to that shown in Figure 3.2. In Figure 3.2a the arrows
represent possible moves of the marmot under the assumption that the marmot is observed
only when it méoves from one area to another, and in Figure 3.2k the arrows represent
possible moves when it is observed whenever it moves and af regularly spaced times—
and can therefore be in the same area on successive observations. Figure 3.2 provides two
examples of a transition diagram. It illustrates possible transitions betwesn states of ‘our
process. Later we will add probabilities of the transitions to the diagram.

There are natural asswmptions one can make about the movements of the marmot. The
likelihood of the marmot moving from the brush to the rock may depend on several of the
preceding moves, or it may depend only on the immediately preceding move, or it may
be independent of precedmg moves. Each of these assumptions leads to a mathemnatical

mode] whose predictions can be compared with observations. Here, we consider in detail -

only one such assumption: We assume that the likelihoods of the various possibie moves

Figure 3.2
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for the marmot depend only on t];e location of the marmét, not on how much time has
clapsed since we began the observations and not on the previous moves of the marmot. It is
this assumption {which we will make formal soon) that distinguishes Markov chains from
gther stochastic processes, In circumstances where the Markov assumption is appropriate,
1t 1s customary to arrange the likelihoods or probabilities of moves in a table or matrix, We
Mustrate this idea with two examples.

EXAMPLE 3.1 Assume that the marmot is observed only when it moves from one sub-
area to another and that it is equally likely to make any move available to it. Then the
probabilities of various moves are as showrn in Table 3.1.

Tabie 3.1
Location after Move
R B M h)
R0 5 3
Location

B L 0 : 0

before . 1 -
M 4 = 5 0 1
Qve 3 3 3
s 3 0 3 0

EXAMPLE 3.2 Tor this exampie, assume that the marmot is observed perdodically and
whenever it moves from one subarea to another. Assume that it is twice as likely to re-
main where it is as to move, and if it moves, then it is equally likely to make any move
available to it. Under these assumptions, the probabilities of various moves are as shown

Table 3.2, 4
Tahle 3.2
Location after Move
R B M A
2 1 L i
e L 5 5 s
ocation i 2 i
o 5% 5 5 0
clore M 1 1 2 1
Move g § 3 §
1 1 2
5 % 0 g 3

The tasks of verifying the entries in these tables and finding corresponding tables in
other situations are topics of the exercises.

Table 3.2 Hsts the probabilities for single transitions by the marmot. In that table, a
transition ocours whenever a fixed peried of time has elapsed or the marmot has changed
arcas, whichever event occurs first. We are often interested in the resuits of multiple transi-
tions, and we need the probabilities of each possible result. One method of computing these
probabilities is by using a simple tree diagram. For example, seppose that the marmot is in
the brush at a certain time, and we want to know how likely it is to be in each of the areas
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Figure 3.3

R, B, M, § after two transitions. The tree diagram in Figure 3.3 illustrates the cormputations
needed to compute these four probabilities. We see that

: 1 2 2 1 1 i 13
Probability[ B — R in two transitions] = (E) <§) + <§> (6) + (6) (—9-) =
| £l 1 2 2 1 1 26
Probability( 5 —> B in two transitions] = (g) (5) + (g) (5) + (g) (—9—) = %

5 . 1 /1 2\ /1 1N 72\ 13
Probability{ B —+5Mintw0trans1t10ns]=(g> (5 + 3 z + 3 335

1N\ /1 0N /1 2
Probability[ 8 —> S in two ransitions] = (5) (»9—) + (E) (§> =

In this eiamfple it is relatively straightforward to determine the two-step transition
probabikities using tree diagrams similar to Figure 3.3. In cases with more states or more
steps, this method becomes unwieldy and we need an alternative.

Z The Eﬁ’ect;s of Group Structure on Small-Group Decision Making

In many group dec1smn—mak1ng situations, we believe that in addition to the merits of the
alternatives being considered, there are aspects of the dynamics of the group that influence
the outcome. For instance, once a group of six people reaches a division of five to one in favor
of sorne alternative, the mere fact of this division exerts some influence on the dissenting
‘member. In this éxample we descrihe a mode] designed to test this conjecture in a setiing
in experimental psychclogy. ’
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Toisclate the possible influence of the group structure on decision making, we introduce
an experiment designed to minimize other influences. In particular, care must be taken to
ensure that the alternatives appear equally attractive and that no individual in the group
assumes a ieadership position. Suppose a group of people performs a sequence of trials,
Each trial consists of the presentation of a stimulus—a set of alternatives—to be evaluated
and a discussion of the merits of the alternatives, The discussion continues until consensus
is reached. Suppose that a stimulus consists of a set of three geometrical designs that are
to be evaluated according to some criteria. Each member of the group is able to coavey
a preference to the investigator without other members of the group knowing what that
preference is, and preferences can be changed at will. The subjects are asked to express
a preference as socn as the stimulus is shown to the group and then to begin discussions
seeking to reach consensus. Each subject is to convey a preference change to the sroup
right afier it is conveyed 1o the investigator. After consensus is reached, the group is told
which of the designs is “best” in terms of the criteria. The group is led to believe that
there is a system behind the assignment of values to the designs in the set, but actually the
designs in each set are ranked randomly. Consequently, as far as the group is concerned,
each design is equally preferable. Also, techniques of selective reinforcement can be used
to discourage the emergence of a group leader. For instance, selection of the best design can
be manipulated so that each member of the group appears to have about the same percentage
of “correct” initial selections.

- Preference selections are monitored and recorded. The process continues either for a
certain period of time or for a certain number of trials. In practice, it might be desirable to
discard the first few trials becanse the subjects are becoming familiar with the experimental
procedure during that period.

To make the discussion more specific, suppose that there are four individuals and
that each stimmlus consists of three designs. Each individual can select any of the three
alternatives as the best, and consequently, there are 3¢ = 81 pessible distributions of pref-
erences for the group, However, the experiment has been designed so that the alternatives
appear equally attractive, and we ought not to distinguish among them. For example, if
the alternatives are X, ¥, and Z, and if the choices of the members are X, ¥, ¥, ¥ in cne
case and ¥, X, X, X in another, thep these choices should be viewed as equivalent from
the standpoint of the structure of the group. Both represent a group structure in which three
people votz for one alternative and a siugle individual votes for another, Also, there is no
reason to distinguish among members of the group. That is, three votes for altemnative X
and one vote for ¥ should be considered the same regardless of which member votes for
alternative Y.

It follows that the important information is the number of individuals '__who voted for
the most popular alternative, the number who voted for the second most popular alternative,
and the number who voted for the least popular alternative. That is, the relevant information
is contained in a triple of integers (x, ¥, ), where x is the number of individuals voting for
the most popular alternative, y is the number voting for the second most popular alternative,
z is'the number voting for the least popular alternative, and x + y + z = 4. The possible
triples are (4,0,0), (3,1,®), (2,2, 0), and {2, 1, 1). We refer to these triples as group
compositions and we write them simply as xyz; thus 310 is the same as (3, 1, 0.

Suppose that the group compositions are monitored continuously and every preference
change is recorded. A change in group composition occurs whenever any subject changes
a vote. Each preference change is equivalent to a change from one group composition to
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Figure 3.4
Table 3.3 _
Composition after One Shift T
. a0 310 20 201 |
: 1 L 3 1
Composition 310 8 8 g f
before 220 0 3 0 3
Shift 211 0 i : i

another, possibly:the same one. We assume that only one vote changes at a time. In the
rare event that two people simultanecusly indicate a change of vote, we arbitrarily select
one to be changed first. It follows that preference changes by individuals are equivalent to
shifts between group compositions that can be effected by the change of a single vote. For
example, 211 — 220 is an admissible transition, but 211 — 400 is not. The possible shifts
are shown by arrows in Figure 3.4.

Note that it is possible for a single vote to change and for a group with composmon 211
to change to & group with the same composition. Likewise for a group with composition
310. Because a (rial of the experiment ends when consensus is reached, there are no possible
shifts from group composition 400.

The probabiliies of various shifts can be conveniently summarized in a table. The
entries in the table will depend, of course, on the assumptions about the voting behavior of
the subjects. For example, if each subject is equally likely to change her or his vote and is
equally likely to change to each of the other alternatives, then we have the information in
Table 3.3. The task of verifying the entries in Table 3.3 is the topic of Exercise 5.

As a final comment in this section, we recall that an important part of a mathemati-
cal model is the assumptions. Cur discussion of small-group decision making provided an
example of one possible set of assumptions that can be made in that situation—of course,
there are many alternatives, It is difficult (and frequently impossible) to directly test the
validity of the assumptions. Instead, it is customary to compare the predictions based on the
assumptions with observations. If the observations are consistent with the predictions, then
one has reason O contmue the study. If the observations are not consistent with the pre-
dictions, then the assumptions need io be reviewed and medified. In the following sections
of this chapter, we develop a theory and technigues to make predictions, and in Chapter 4
we will develop techniques for making predictions hased on simulation models. Making
predictions based on assumptions and then comparing the predictions with observations are
part of the cycle of model building described in Chapter 1.
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Figure 35

1.

2.

Fxercises 3.1

In the model of a marmot’s range describedin this section, verify the entries in Table 3.1
under the assumptions given in Exampls 3.1.

In the model of a marmot’s range described in this section, verify the entries in Table 3.2
under the assumptions given in Example 3.2.

. A deer has as its range the area diagrammed in Figure 3.5, and its movements zre

observed and recorded as follows: The location of the deer is noted every hour and
every time it moves from one area of its range ¢o0 another. For this purpose, the woods
and the field to the east of the road are distinguished from the woods and the field to

" the west of the road. If the deer crosses the road, then it mmoves only from field to field;

that is, it does not move to or from the woods when crossing the road. Suppose that the
probabilities of moves depend only on its current location and not on what happened
prior to its last move.

Assume that the deer is twice as likely to remain where it is as to move and that
every move that does not require it to cross the road is equally fikely. Also, if it moves,
each option that does not require it £o cross the road is three times as likelyto be selected
as an option that mvoives crossing the road. Create a table similar to Table 3.1 for this
situation.

- A marmot tives in the region diagrammed in Figure 3.6. Suppose the: marmot is ob-

served every hour and each time it moves from one area to another, Suppose that the
probabilities of moves depend oniy on its current location, and not on what happened
prior to its last move. Also suppose it is equally likely to move and to remain where
it is. If it moves, the probability of its moving to an adjoining area is proportional to
the number of resources availabie to it in that area in comparison to the resources in
all adjoining areas. The areas hordering the pond have water in addition to the other
resources specified. Create a table similar to Table 3.1 for this situation.

Consider the small-group decision-making situation described in this section in which
three alternatives are presented to four individuals. If each subject is equally likely to
change her or his vote, and is equally likely to change to each of the other alternatives,
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Figure 3.6

show that the probabilities of shifts between group compositions are as shown in
Table 3.3.

6. Consider the small-group decision-making sn'uauon described in this section in which
three alternatives are presented to four individuals. If from a specific group composition
cach possible shift to another group composition, possibly the same one, is equally
likely, create a table similar to Table 3.3 for this case. How does the table change if
oaly shifts to different group compositions are possible?

7. Consider a smaﬂ -group decision-making situation similar to that described in this sec-
tion with four alternatives presented to five individuals. What are the group compositions
in this case° Tf each subject is equally likely to change her or his vote, and is equally
likely to chaucre to each of tbe other alternatives, find the probabilities of shifts between
group composmons in this case and create a table similar to Table 3.2.

8. In the small:group decision-making experiment described in this section, define a shift
toward consensus as one of the following: 211 — 310,220 — 310,310 — 400. Assume
that a voter iwho can make a shift toward consensus is twice as lilkely to make a vote
change as any other voter, and that if such a voter changes her or his vote, zll changes
are equally hkely Also, assume that all other voters are equally likely to change their
votes and that all cheices are equally Iikely. Create a table similar to Table 3.3 for this
situation.

9. Inthe sma}l«group decision-making experiment described in this section, define a shift
toward consensus as one of the following: 211 = 310, 220 — 310, 310 — 400. Assume
that 2 voter;who can make a shift toward consensus is twice as likely to make a vote
change as any other voier, and that if such a voter changes her or his vote, the change
is twice as likely to be toward consensus as otherwise. Suppose that all cther voters
are equally likely to change their votes and that all vote changes are equally hikely for
thess voters. Create a table simiiar to Table 3.3 for this situation.

10. Consider a smallm'roup decision-making situation similar to the one described in this
section, but:with six individuals and three alternatives. Formulate a model stmilar to the
one of this section underthe following assumption: An individual who is the only person
votiang for an alternative is three times as Hkely to change her vote as an individual who
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is one of two o1 more voting for an alternative. If an individual changes her vote, she is
equaily likely to change to any other alternative. Create a table similar to Table 3.3 for
this case. ‘

3.2 Basic Properties of Markov Chains

With the examples and discussion of Section 3.1 as a guide, we tumn to a discussion of two
more general settings that include the examples of Section 3.1, We consider a systemn that
can be in any of ¥ possible states, and we observe the system at n successive times. The
concepts of state and being in a state or occupying a state ave taken as undefined terms.
When we construct logical models of systems in specific circumnstances, we must assign
meanings to these terms, but in this general discussion they are left undefined. We wsually
refer to the states simply by the integers 1,2, ..., N.

By the very nature of a Markov chain, it is likely that for most observations, the
specific state occupied by the system cannot be determined in advance, and one krows only
the probabilities that it will be in the vatious states. Consequently, the status of a system is
usnally given as a state vector.

Definition 3.1 A srare vecror x for a Markov chain with N states is an N-vector x =
[x1 x5 -+ xy],wherex, is the probability that the systemisin state{,i = 1,2, ..., N,
The state vector on the mth observation will be denoted by x{m).

As an exaruple, to say that the state of a four-state Markov chain is specified by the state
vector [0 .25 .5 257 means that the systemis not in state 1, i3 n state 2 with probability
.23, is in state 3 with probability .5, and is in state 4 with probability .25. If the system
is known to be in a specific state, say state j, then the state vector has the jth coordinate
equal to 1 and the rernaining coordinates equal to zero. For instance, if a four-state Markov
chain is known to be in state 2, then the state vectoris [0 1 0 0}, In a Markov chain
with N states, if the systemn is equally likely to be in any state, then the state vector has ali
coordinates equal to 1/N,

If the systern is in state i on the kth observation and in state j on the (k + 1)th abser-
vation, then we say that the system has made a fransirion from state { to state j at the kth
tricl, step, or stage of the process. We also say that the system has made a move from state
i to state ;.

It will be useful to work with another exarnple, one that is somewhat sn-npler than those
infroduced in Section 3.1.

- We use a setting that is familiar as a version of the classic maze of experimental
psychology. The study of the behavior of mice {and rats) in mazes has been—and continues
to be—important in generating and verifying hypotheses that lead to useful models for .
animal behavior.

EXAMPLE 3.3 Suppose that a mouse is released in the maze shown in Figure 3.7 and its
behavior is observed. The illumination level in each compartment of the maze is maintained
as shown in the figure. The system to be studied consists of the mouse and the maze, and
we assume that the mouse is always In exactly one compartment and that it is possible to
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deterrnine that compartment. The system is szid tobe in state { if the mouse is in compartment
i, i=1,2,3,4. Observations are to be made, and the state of the system recorded every
2 minutes and each time the mouse moves from one compartmens to another, necessarily
an adjacent one. To illustrate the possible ransitions, suppose that on one observation the
mouse is in compartment 2. Om the next observation it may be in compartment 1, 2, or 3; it
cannot be in compartment 4 according to our definition of observation. H

Inthe situatifon of Exanip}e 3.3, we assume, as we would expsct, that the mouse moves
in unpredictable; ways, and we describe its movements in probabilistic terms. Suppose
that the 1nouse is in state i on observation k, and we wish to determipe the probability
that it is in s?ﬁteg j on observation £ + 1. In general, we raight expect this probability t©
depend on the states 7 and j, the obsarvation k, and the history of the movements of the
mouse prior to its armival in state i on the kth observation, There are, of course, many

ways in which the transition could depend on the history of the process. For instance, we .

could assume that the mouse has complete recail of past movements and that its transition
probabilities at the kth step depend on the total prior history of its movements. Although in
some circumstarices such an assumption may be appropriate, in many cases it leads to very
complex models without yielding any improvements in predictions. A simpler assumption
would be that the tansition probabilities depend only on the most recent past, say the
last 1, 2, or 3 ﬁloves. We investigate hete the situation wherelm transition probabilities
depend only on the current state, not on the prior history of the process. This includes the
assumption that;they do not depend on k—the number of steps for which the process has
been observed. ! .

‘We surnrmarize this discussion by giving the key assump tion that distinguishes Markov
chains from more general stochastic processes.

B The Marl;(()v Assumption

A Markov chain is a stochastic process with a finite number of states and with the property
thatifitis m staﬁte i on one observation, then the probabilicy that it will be in state ; on the
next observation depends on states ¢ and j (which may be the same state} and not on the
observation mumber or on the history of the process prior to the current observation.

It will be u$eful to introduce the following notation and terminotogy.

Definition3.2  Let p;; denote the conditional probability thatif the system. isin state i on
one observation, then it will be in state j on the next observation, 1 <i<N,1<j<N.
These probabﬁﬁﬁes are called transition probabilities, or, more precisely, one-step tran-
sition probabilities. For each Markov chain, the N X N matrizx P whose ij-entry is py; is
called the Irai’zsition matrix for the Markov chain. .
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‘We have
Pu Pz P Pin
Pu Pu P o PN
P —_—
Py Pwy2 PN3 o0 PN

as the transition matrix for a Markov chain whose irensition probabilities are p;;,
1<i<N,1<j<N.

Remark It is important to note that because of the Markov assumption, p;; is the proba-
bility that if the system is in state { on observation & then it will be in state j on observation
k+ 1, independent of k. Therefore, if one knows that {with states and observations speci-
fied) the transition probabilities do depend on the observation numbefs, thén the stochastic
process is not a Markov chain according te our defirition.

Tt follows from the definition of transition probability that the probability p;; of making
atransition from state i to state j at the kth step is the same as the probability of the system
being in state  on the second observation given that it was in state { on the first observation.
It is sometimes appropriate to mnaintain the assumption that the transition probabilities are
independent of the history of the process but to permit them to depend on the time~that is,
on how long the process has been observed. In this case we have a more general stochastic
process usuafly called a novhomogeneous Markov, chain. We will not pursue this more
general situation here. i

]?.ach entry in the ith row of the transition matrix is a probability, and if the sys-
tem is in state { on one observation, then it must be in some state j, 1 < j <N, on
the next cbservation. Consequently, for each { we have E‘;’:i pi; = 1, and the vectors
P = .[pu P -+ pinl, i =1,2,..., N, are probability vectors. Each row of the
transition matrix is a probability vector.

The transition matrix P has entries that are the probabilities of making transiticns from
one specified state to another in one step. There are corresponding matrices for multistep
transition probabilities.

D_e.ﬁnition 3.3 Let P(m) = [p;;(m)] he the matrix for which the ij;entry is the proba- -
bility of making a transition from state 7 to state jinm steps, | <7 < N, 1 < j < N,
m=273,.... Clarly, P(1) =P.

Remark Mote that we use the terms szep and move in the same way as we use the ferm
transition. It is common to talk about the probability of a transition from state  to state J
in m steps, s moves, Or m ransitions.

EXAMPLE 3.4 Consider the simation described above in which a mouse moves in a
meze with compartments illuminated at different levels, and formulate a Markov chain
mode] under the following assumption: The mouse remains in the same compartment with
probability .5, and the rest of the time it is equally likely to make any of the moves open
to it.
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We definc the states as follows: The system s in state { if the mouse isin compartment?,
i=1,2,3,4 Bedause the molse remains in the same compartment half the time, p11 = .3,
pn= 3 pn= 5, and pas = .5. Next, if the mouse is in state 1 on.one observation, tlhen
on the next observation it can be only in state L or 2. Consequertly, using the assumplion,
we have p1p = .5. Likewise, psy = .5. Also. if the mouse is in state 2 on one observation,
then on the next observation it car be in state 1, 2, or 3. Consequently, because it is in state 2
with probability .5, itis in state 1 or 3 with probability .5, and because it is equaily likely
to be in either, we have py = 25 and po3 = .23, Similarly, p3; = .25, and py = .25,
Finaily, by the way observations are defined, pua. Pia- P D3> Pars a0d pao all equal 0.
Consequently, the transition matrix for this Markov chain is :

- pu Prz Piz Pu 35 5 0 0

po|Pn opmopw opel 25052500 -
‘ pa Pn Py D 0 25 5 .25
Pai Paz Pas P 0 o0 5 5

It is clear that the entries in the tables constructed in Section 3.1 are transition proba-
bilities, and we will represent them in this way in the future.

B State Vectors

A state vector is a probability vector that describes the status of 2 Markov chain at an
observasion, and the staie vectors at two successive ohservations are related in a simple
way. Indeed, if x(m) and x{m + 1) denote the state vectors at the mth and (m + 1)st
observations, respectively, then x(m 4+ 1) = x(m)P. To verify this relationship, suppose
that the state vector at a specific observation 1s X = [x; =z --- xyl (Here wesuppress
the dependence on the observation nurmber 7 for potational convenience.) Then, using the
definition of pjxfor j = L2, ..., N, we can conclude that the probability it 8 in state 1
on the next observation is :

y =X P+ Xepar o H AP

Thas y; is the dot product of < and the first column of P. Likewise, this time using the
definition of p piorj=12..., N, we can conclude that the probability it is in state 2
on the next observation is

vy = X P12+ X2Ppz o T AN DA

Continsing in this fashion, we find that the probability that it is in stawe N on the next
observation is

yy = X iy T Xpn o T XN Py

That is, if the state vector at one observationisx =[x x2 - xx]. then the state vector
at the pext observation is

o o»o yy] =x%P
Thus, with x{m) and x(m + 1) as defined above, we have .

(3.1) 2fm + 1) = x(m)P

3.2 Basic Properties of Markov Chains 119

Multistep Transitions and the Sequence of State Vectors

If the initial state vector is x, then the state vector at the next observation is xP, the state
vector at the second observation is (xP)P = xPP = xP”, and so on. That is, the sequence
of state vectors is

A Markov chain is determined by the set of stages, the transition matrix, and the initial
state vector for the system. It is frequently useful to represent the information on the set of
states and the transition probabilities in a rransition diagram. The most common form of
4 transition diagram has the states represented by symbols (generally numbers or letters in
small circles), an arrow directed from state i to state j if p;; > 0, and a number near the
arrow with the value of p;;. The transition diagram for the mode! described in Example 3.3
is shown in Figure 3.8.

General stochastic processes can be studied using tres diagrams, and in particular,
Markov chains can be studied in that way. There is, of course, a close connection between the
information usually included on tree diagrams and the information included in a transition
matrix. Given the initial state of the system, either tree diagrams or multistep transition
matrices can be used to determnine how the process evolves over time. Also, using a one-
step transition matrix, it is always possible to determine the multistep matrix by using a tree
diagram, and we illustrate this in the next example.

Jin

§

5 5 5
Y 5 (¥ 25 (¥ ¥
25 e 2 e ’

2!
5 5

Figure 3.8

EXAMPLE 3.5 Consider the situation described in Example 3.4 and determine the
2-step transition matrix—that is, the matrix of two-step fransition probabilities—by using
tree diagrams.

Because the first row of the two-step transition matrix consists of the probabilities of
making transitions from state 1 to states 1, 2, 3, 4 in two steps, we begin by constructing the
tree diagram when the process begins in state 1. That tree diagram is shown m Figore 3.9(a}.
Using the Information on the tree diagram, we find that

211(2) = .375, Plg(z) =.5 p@= 125, p14(2) = 0

\
To determnine the enities in the second row of the two-step matrix, we use-a tree diagram
for which the process begins in state 2, as shown in Figure 3.9(b). Using the information
on the tree diagram, we find that

P2y =25, pun(2) = 4375 pn(2) =25, pui(2) =.00625

Similar arguments lead to the third and fourth rows of the two-step transition matrix, They
are

pn(2) = 0625, p3(2) = 25, Pas(2) = 4375, puid) = .25
pa(2) =0, pa(2) = 125, pa3(2) = .3, paa(2) = 375
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125

25 28

425
25

25
435

125
25

0625
125

25

) 0625

{a)

Figure 3.9

It follows that the two-step transition natrix P(2) is
3750 5000 1250 0
2500 4375 2500 .0625
0625 2500 4375 2500
0 1230 5000 .3750

Py =

The technique illustrated in Example 3.5 is a very general one, and it can be ysed, in
particuiar, to construct the m-step ransition matrix for any integer m. However, it is clear
that for Markov ¢hains with a farge number of states or a large number of steps m, the effort
involved in using this method can be prohibitive. Indeed, one of the great beneflts of using
Markov chains in mathematical models is that there is a much simpler way to determine
muitistep transition wmatrices once you know the one-step transition matrix.

THLEOREM 31 Let P = {p;;] be the transition matrix of a Markov chain. Then the
ij-entry of the mi-step transition matrix P(m) is the {j-entry of P, the mth power of the
one-step ransition matrix.

Proof.  The proof is a direct consequence of the definition of conditional probability and
the Markov assumption, and it illustrates a useful approach to computing multistep transition
probabilities. Indeed, the ij-entry of P(m) is the conditional probability that the system is
in siate j given that it began in state i and made m transitions. Consider each of the m-step
sample paths from state ; to state j as consisting of a path of length m — 1 followed by
a single step. Then, after m — 1 steps the system must be in some state, say state . The
conditional probability that it is in state k given that it began in state 7 and made m — 1
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transitions is the ik-entry of the (m — 1)-step transition matrix, P{m — 1), Therefore, the
probability that the system is in state k after m — 1 steps and in state j after m steps is equal
to pi{m — 1) py;. Finally, using the fact that each sample path {s in some state k after m — 1
transitions, we have

N
pylm) = pulm— Dpy

k=1

This shows that P{m) = P{im — 1)P. Applying the same reasoning to P(m — 1), we
find that P(m — 1) = P{m — 2)P, and consequently P(m) = P(im — 2)PP = P(m — 2)P%.:
Continuing the argument, we find that

P(my = Pim — NP = P(m — 2P =P(m — 3)P° = ... = P(1)p"-D
But P(1) = P, and consequently P(m) = P,
EXAMPLE 3.6 Consider the simation described in Example 3.4, and compute the two-

step transition matrix P(2) using Theorem 3.1.
In Example 3.4 we determined the transition matrix for the Markov chain to be

S35

Using Theorsin 3.1, we find that the two-step transition matrix P(2) is

(,5.500'.5.500

: ' ) — 25 5 25 0|25 5 25 0
0 25 5 25(|0 25 5 25
6 0 5 5]{0 0 5 3
(3750 5000 .1250 0O
| 2500 4375 2500 .0625}
T 0625 2500 4375 2500
| 0 1250 .5000 .3750J
which is the same result we obtained in Example 3.5, as it must be. |

EXAMPLE 3.7 Consider the process of group decision making described in Section 3.1.

In particular, suppose we have three alternatives and a group of four individuals. We form a

Markov chain model under the assumption that each individual is equally likely to change
her or his vote and is equally likely to change to sach of the other alternatives.

Table 3.3 contains the probabilities for shifts from the group compositions 310, 220,
and 211 to the group compositions 400, 310, 220, and 211. To make use of the Markov
chain concept, we need to include the group composition 400 as a state. The simation was
originally described as an experiment that ended as soon as consensus was reached—that is,
as scon as the group reached composition 400, However, for the purpose of our Markov chain
concept, it 1s useful to view 400 just as we view any other state, but with the characteristic
that the system never leaves that state. This can be accomplished by setting the ransition
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probability from the state corresponding to group composition 400 to itself equal to 1, and
the probability of, makmo a transition from state 400 to any other state equal to 0.

For this example, we define the states of the system as the group compositions, and
we define staze 1 as group compesition 400, and states 2, 3 ,and 4 as group compositions
310, 220, and 211; respectively. Then, with the understandmc that once the system reaches
group composition 400 it does not leave it, we have the transition matrix

I 0 0 0
1or o3 3
g 8 3 8
P = 1
0 5 0 3
VS

" Suppose the group is initially in state 4; that is, the group composition is 211. How
many vote changes are required before the probability of the group reaching consensus first
reaches .57 We answer this question by computing successive powers P™ of the transition
matrix P and asking for the smallest integer m for which pay{m) = .5. We have pafk) < .5
for 1 <k < 19 and

i 0 0 0
5536 1265 .1049 2150
PO =1 soea 1399 1160 2377
4941 1433 1189 2436 |
1 i) 0 0 7
5694 1220 .1012 2074
PCL =1 539 1349 1119 2293
L5121 1383 1147 2350

from which we see that after 20 vote changes, the probability pe (20) = 494, and after
21 vote changes,ipa; (21} = .312. Thus 21 vote changes are required for the probability
of the group reaching consensus to exceed 5. Recall that the system remains in state 1
once it arrives there. Consequently, the sequence of entries in the (4, 1) spot in the matrices
PGn)is a monotone nondecreasing sequence, and once an entry is greater than .5, zll
subsequent entries are also greater than 5. Of course, this answer depends heavily on the
inigal assumptions of the model. A different set of assumptions about the likelihood of vote
changes would glve a different matrix P and a different answer. B

ExerciSes 32

In these exercises, forming a Markov chain model requires that you identify the states and
find the transition matrix.

1. Suppose that a mouse moves in the maze shown iz Figure 3.7 and that observations are
made every 5 minutes and every time the mouse changes compartments. Formulate a
Markov chain model under the following assumptions: The mouse remains i the same
compartment 40% of the time, and if it has a choice when it moves, it moves to a darker
compartment twice as often as to a lighter one. -
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A

Figure 3.10

2. In the model formulated in Exetcise 1, suppose the mouse is initially in the highly
illuminated compartment.

(a) Find the probability that it does not leave the highly illuminated compartment in
the first five transitions.

(b} Find the probability that it is in the same compartment after five observations.

{c) Find the probability that it is not in the highly iliuminated compartment on exactly
one of the next five observations.

3. Suppose that a mouse moves in the maze shown in Figare 3.7 and that observations are
made every time the mouse changes compartments. Formulate a Markov chain model
under the following assumption: Whenever the mouse has a choice, it moves o a darker
compartment three times as offen as to a lighter one.

4. Suppose that we have the situation considered in Example 3.7. If the group is initiaily
divided 220, how many vote changes are necessary before the probability of consensus
first exceeds 1 ?

5. Inthe group dec1sionﬁmaking situation described in Section 3.1, define a shift toward
consensus as one of the followmg: 211 — 310, 220 = 310, 310 — 400. Assume that a
voter who can make a shift toward consensus is twice as likely to make a vote change as
any other voter, and that if such a voter changes her or his vote, all chan ges are equally
likely. Also, assume that all other voters are equally likely to change their votes and
that all choices are equally likely.

{(a) Form a Markov chain model for this situation and find the transition matrix.
(b) If the group is mitially distributed 220, what is the most likely Zroup composition
after five vote changes? After ten vote changes?

6. An inebriated bicyclist cycles through the neighborlood shown in Figure 3.10. He
beging at location A, and he traverses the streets at tandom. During each time interval
he either rests at an intersection or pedals exactly one block.

Suppose that at each intersection the bicyckist is three times as likely to pedal as
to rest. If he pedals, he is equally likely to take any street open to him. Forin a Markov
chain modet for this situation.

7. In the seting described in Exercise 6, suppose that the bicyclist never rests, that at any
intersection he is equally likely to take any strest available to him, and that once he
reaches location B hie stays there. Form a Markov chain model using these assumptions,

8. Consider a small-group decision-making situation simiiar to that described in Sec-
tion 3.1 but with five individuals and three alternatives. Formuiate a Markov chain
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10.

il

model under the foliowing assumption: An individual who is the only person voting
for an altemétive is twice as likely to change her vote as a person who is one of a group
of two or more voting for an alternative. If an individual changes her vote, then the
probability of her changing to a particular alternative is proporticnal to the number of
individuals voting for that aliernative.

If the group initially has four individuals voting for the most popular alternative,
find the probahility that consensus is reached after at mast three vote changes.

. A Bloomington resident commutes to work in Indianapolis, and ke encounters several

traffic lights ion the way to work each day. Over a period of time, the following pattern
has emerged:

+ Each day the first light is green.
+ If 2 light is green, then the next one is always red.
« If he encounters a green light and then a red one, then the next wiil be green with
probability .6 and red with probability 4. '
« If he encounters two red lghts in a row, then the next will be green with probability
p and red with probability 1 — p
Formulate a Markov chain model for this situation.
Congider 2 smail-group decision-making situation similar to that described in Sec-
tion 3.1 with five individuals and four alternatives. What are the group compositions in
this case? Form a Markov chain model under the following assumption: Each subject
is equally Likely to change her or his vote and is equally likely to change to each of the
other altemanves
If the group initially has four individuals voting for the most popu}ar alteruative,
find the probability that the same holds after four vote changes.

A marmot lives in the region shown in Figure 3,11. Suppose that the marmot is observed
every hour and each time it moves from one area to another. Formulate a Markov chain
model under the following assumptions: The marmot is twice as likely to move as to
remain where it is, and if it moves, the probability of its moving to a particular area
is proportional to the mumber of Tesources available to it in that area in comparison to
the number of resources available to it in the adjoining areas. The areas bordering the
pond have water in addition to the resources specified.

If the marmot begins in the rock pﬂe find the probability it Is in the south meadow
on the fifth observatton

Brush

/ {food and
shelter}

Figure 3.11

12

14.

15.

16.

. There are two coins, one fair and one biased with Pr[H] =
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2. In the situation described in Exercise 11;

{a) Suppose the marmot is initielly in the north meadow, and find the probability
that it is in the rocks after 10 iransitions. Find the same probability after 20 and
40 transitions.
(b) Suppose the marmot is itialty in the brush, and determine the same probabrlities
as in part (a).
3. A game is piayed by
successively flipping the coins as follows:
* The game begins with a flip of the fair coin, and the resuit, A or 7', is noted.
« If the result of a fiip is H, then the other coin is used on the next flip, and the result
is noted.
» If the result of a flip is T, then the same coin is used on the next flip, and the result
is noted,

{a) Formulate a Markov chain model for this situation.
(b} Find the probability that the fourth flip is a head.

There are six balls, two red and four green, distributed between boxes labeled 1 and 2,
three balls in each box. When the game begins, there are two green balls and one red
ball in box 1. The game is played as follows: A ball is selected at random from each
box. The ball selected from box 1 is placed in box 2, the ball selected from box 2 is
placed in box 1, and the colors of the balls in each box are noted. Then two more balls
are selected, and play continues.

(a) Formulate a Markov chain model for this situation. What are your states?
(b) Find the probability that there are exactly two red balls in box 1 after three plays
of the game.

Joe and Jess play a game as follows: An unfair coin with Pr[H] = .6 is flipped, and the

_tesult is moted. If it comes up heads, then Jess pays Joe one dollar, and if it comes up

tails, then Joe pays Jess one dollas. If each player has money, then the com is flipped
again. The game ends as soon a3 one player has all the money. When the game begins,
Joe has one doliar and Jess has three doliars.

{(a) Formulate a Markov chain model for this game.

{b) Find the probability that Jess has all the money after not more than four flips of the
COIN. ‘

An experiment consists of flipping an unfair coin with Pr{&] = .6 repeatedly, noting

the result of each flip, until there are three consecutive heads. At that point the experi-

ment ends.

{a) Formulate a Markov chain model for this experiment. :

(b} Find the probability that the experirnent ends after exactly six flips of the coin.

3.3 Classification of Markov Chains and the
Long-Range Behavior of Regular Markov Chains

Markov chains, as examples of stochastic processes, can be used to yield information on
the probabilities of events, events described in terms of states or sets of states. A key toolin
studying Markov chains is the multistep transition matrix. In Section 3.2 we showed that for
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every Markov chain, the m-step transition matrix is the mth power of the one-siep transition
matrix. Beyond this common behavior, Markoy chains are quite diverse. The goal of this
section is to illustrate some of this diversity, to provide a useful way to classify Markov
chains, and to study some selected classes in detail.

EXAMPLE 3.8 Consider two Markov chains with state space {1, 2, 3'}; the first has tran-
sition matrix P and the second has transition toammix T.

010 ¢c 1 0
P=1|0 0 1 and T= |0 0 1
1 0 0 5 5 0

The transition diagrams for these Markov chains are shown in Figure 3.12: Fig-
ure 3.12(a) shows the transition diagram for the Markov chain with transition matrix P,
and Figure: 3.12(b) shows the transition diagram for the Markov chain with transition
matrix T. :

First we study the Markov chaim with transition matrix P. If the system begins in
state 1, then the séquence of state vectorsis {1 0 0]—=[0 1 O0]—=f0 0O i]-—
{1 0 0= [0 1 0] ... Thatis, the system cycles repeatedly through states 1,
2, and 3 in thai order. This can also be shown by examining the powers of the transition
matrix P. Indeed; the third power of P is the identity matrix T, so if the system has state
vectorx = [¥; X2 x3]onobservation m, then it has the same state vector on observation
m+ 3P =x).

The behavior of the Markov chain with transition watrix T is quite different. We have:

0 0 1 5 5 0 0 35 5
=5 5 0 T={0 35 5 T = |25 25 5
05 5 25 25 5 25 5 .25

and

2000 4000 4000
T(30) =T | 2000 .4000 .4000
2000 4000 4000

In fact, T(m) is the same as T (30)—at least to the accuracy shown—for all m > 30.
{See Exercise 5 for additional imformation on this sitnation.) We see that the rows of T(30)
are all the same.é One consequence of this is that for all observations numbered 30 and
beyond, the state vector of the system is [ 2000 4000 .4C00] independent of the initial
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state. Indeed, for an initial state vector [x ¥ 7], we have

2000 4000 4000

[x oy z]TOmy=[x y z]|.2000 4000 4000

22000 4000 4000

= [ 2000x+.20007+.2000z .4000x +.4000y+.4000z .4000x + 4000y+.4000z |
=T1.2000(x+y+z) 4000(x+y+z) .4000(x+y+z)]
=[2000 4000 40001

for any probability vector [x vy z 1.

That is, the system “forgets” the initial state, or the early history. The same conclusion
holds for any matrix that differs from T only in the last row and that has a third row equal
tof p 1—p 0,0 < p < 1.In this case, the entries in the powers will be different (they
will depend on the value of ), but the conclosion will be the same: As the numnber m of
transitions increases, the m-step tTransition matrix T () appreaches a matmix with entries
that are all positive and with rows that are ail the same. ]

EXAMPLE 3.9 A Markov chain with state space § = {1, 2, 3, 4, 5} has the transition
diagram shown in Figure 3.13.
The transition matrix for this chain is

0 0 8 2 0
0 3 0 0 7
P=|1 6 3 0 0
0 5 5.0 0
01 0 0 O

In this example, the probability of a direct transition from state 1 to state 2 is 0, but it
is possible to go from state 1 to state 2 in more than one step, and in fact p12{2) > 0. These
facts are clear from Figure 3.13. However, we also see that it is impossible to go from state 2
to state 1 in any number of steps: pay(m) = 0 for all values of m. It is possible to go from
state 1 to states 3 and 4, and state 1 can he reached froin states 3 and 4. Thus states 1, 3,
and 4 are mutually accessible from each other. The set of all states can be partitioned using
this “reachability” criterion, and we next turn to a systematic disenssion of this idea. 2]

Figure 3.13

The idea introduced in Example 3.9 is helpful in classifying Markov chains, and we now
show how to use it systematically. Suppose that we have a Markov chain with state space
S=1{1,2,3,..., N} and transition matrix P = {p;;}. We say that state j is accessible from
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state i if there is an integer & such that py; (k) > 0, and we say that states { and j are mutually
accessible if state ; is accessible from state j and state j is accessible from state ¢, This
concept can be used to partition the state space into classes of mutually accessible states.
Begin with state 1, and let S, denote the set of all states that are mutually accessible from
state 1, If §; = S, the entire set of states, then we are finished. If not, then there is a state,
callit j, thatis nétin §;. Let Sy denote the set of all states that are mutually accessible with
j. Continue in this way, and construct a collection of disjoint subsets of § whose union is
S. Bach subset consists of states that are mutually accessible, and no state belongs to 1nore
than one subset. ;

EXAMPLE 3.10 Applying our method of partitioning the states to Example 3.9, we have
S1 = {1,3,4} and & = {2, 3} Note that 5; U S, = § and §, N §; = B. Now suppose
that we form a transition marrix with the states reordered so that the states in the set Sy are
listed first and the states in the set S; are listed next. The order in which the states are listed
within the sets Sﬁ and §; is unimportant, but the order must be the same in the rows and in
the columns of the transition matrix. We have the new transition matrix

S 5y

p— e ——
2 5 1 3 4
2 3 70 0 0
v, 1 0l0 0 o0
1 0 0,0 8 2
Sy¢ 3 6 01 3 0
4 S5 0|0 5 0

where the row and columnn labels denote the states. B®

In Example 3,10 the transition matrix has two block matrices on the main diagonal.
These are shown:by the lines inside the transition matrix. The 2 x 2 block in the upper-left
cofner contains the transition probabilities for transitions between states in the set {2, 3},
and the 3 x 3 block in the lower-right corner contains the transition probabilities for the set
of state's {1, 3, 4}. There is a 2 » 3 matrix of zeros in the upper-right corner, a consequence
of the fact that nfo state in the set {1, 3, 4} is accessible from a state in the set {2, 5}. The
3 x 2 matrix in the lower-left comer contains transition probabilities for transitions from
stafes in the set {1, 3, 4} to states in the set {2, 5}.

The form of the transiion matrix displayed in Example 3.10 can 1 be achieved in the

general case. That is, it is always possible to relabel the classes Sy, S...., S as S,
85, ..., 5 so that the resuiting transition matrix has the form

Ay 00 - 0

X A 0 - 0

X X Ay -+ 0

X X X .. A

i o B S SR
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where each of the matrices A; contains transition probabilities for transitions between states
in the set S} F=1,2,...,k In Example 3.10 we have S| = 5; and §; = 5. Entries
in the transition matrix below these blocks, the blocks denoted by X’s in the transition
matrix, are transition probabilities between states that are not mutually accessible. Each
“0” entry represents a block of zeros. A transition matrix written in this form is said to be
in canonical form. One of the advantages of writing a matrix in canonical form is that the
matrix of m-step transition probabilities has the same form. That is, the block submatrices
on the diagonal contain the m-step transition probabilities within each class, there are zeros
above these diagonal blocks, and the entries below the diagonal blocks are m-step transmon
probabiiities between states in different classes.

Definition 3.4 A Markov chaim for which every two states are mutually accessible is
said to be ergodic.

‘We remark that the transition matrix of an ergodic Markov chain is in canonical form
no matter how the states are ordered (of course, the order must be the samne in the rows
and columns). :

Definition 3.5 TLet j be a state. Then

The index set of the state j, denoted by 7(;), is the set of all mtegers m such that
p;i{m) > 0.
The period of state J, denoted by (), is defined to be

(i) 0if the index [ {j) is empty;
(i) the greatest common divisor of the mtegers in [ () if the index set is not empty.

Note that the index set of a state j consists of the set of all integers m such that there
_is a positive probability of making transitions from state j to state j in m steps.

EXAMPLE 3.11 The Markov chain with transition matrix P in Example 3.8 has index
sets for states 1, 2, and 3 given by 7{1) = (3,6,9,.. L J(2) = {3,6,9,..}, and I (3} =
{3,6,9,...), respectively. It follows that (1) = 3,d(2) =3, and 4(3) = 3.

The Markov chain with transition matrix T in Example 3.8 has index sets for states
i,2,and 3 given by I(1) = {3,5,6,.. ., I{2) =1{2,3,4,.. .}, and 71 (3) = {2,3,4,.. .},
respectvely. It follows that {1} = 1, 4(2) = 1, and d(3) = 1. Note that for matrix T the
periods of all states are the same, but the index sets are not identical. B

EXAMPLE 3.12 Consider the Markov chain with the transition dlacram given in.
Figure 3.14,

Figure 3.14
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The transition matrix for this Markov chain, given in canonical form, is

3 5 1 2 4
5 [1 900 0
5 15 500 ©
1 o o0 1 0
2 |1 .1 00 3
4 1o 010 0

where the state numbers are listed to the left of the rows and above the colurmmns, As we
noted earlier (in Example 3.10), the order in which states 3 anc 5 are listed is unimportant,
aud the order in which states 1, 2, and 4 are listed is mrimportant. However, states 3 and 5
must be listed before states 1, 2, and 4, and the stares must be listed in the same order in the
rows as in the columns.

The index sets for states 1, 2, 3, 4, and 5 are given by I{l) = {3,6,9,...}, I(2) =
[3.6,9,...}, I{Hy = (3,6,9,...}, I(3) = {1.2,3,...}, and I(5) = {1,2,3,...}. It
follows that (1) = 3, d(2) = 3,d{4) = 3,4(3) = 1, and 4{5} = L. B

We note from these exampies that in each case, the periods of all states that are mutually
accessible are the same. This is a general result.

THEGREM 3.2 If states ; and j are mutually accessible, then d(i) = d{j).
Proof. Letm and n be integers such that p;(m) > 0and pj(n) > 0. Then

pilm+n) = pi;(m)p;(r) > 0 and
pilm ) = pula)py(m) >0

and it follows thatm +#n € T (i) and m +n € I ().

Next, let k& be any integer in I(j) and A any diviser of the elements in I (). Then
pulm+n+k) > piyim)p; 0 ps(ny > 0, and consequently m+n +k € I (7). Therefore,
h divides m + n 3 k. However, k& divides m + n, so /2 tmust divide &, But & was any element
in I(}), so h must divide every element of 7 (), and because d{j) is the greatest common
divisor of elements of I(7), b < 4{;j). Finally, because 7 was an arbitrary divisor of the
clements of £ (i), we have 4(i) < d(7).

A similar argument shows that 4(;) < (i), and consequently dii} = d(7). i

Definition 3.6: ' A Markov chain is a regular Markoy chain if it is ergodic and the period
of each state is 1.

The transition matrix P of Exampie 3.8 is not the transition matrix of a regular Markov
chain because the period of each state is 3, but the ransition matrix T is the transition matrix
of a regular Markov chain. Indeed, for the Markov chain with matrix T, inspection of the
transition diagram in Figure 3.12(b) shows that every two states are mutually accessible.
Also, the mdex set for state 1 includes the integers 3 and 5, and conseguently the pericd
of state 1 is 1. As we will show later (in Theorem 3.4), the Markov chain with transition
matrix T has the property that for every initial state vector Xo, the state vector after m
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transitions, x{rn), tends to the state vector {.2 .4 .4]. This convergence of {x{m)} is a
generzl property of regular Markov chains, and it is part of the content of Theorem 3.4,

Before turning to the main result of this section, Theorem 3.4, we remark that the
definition of a regular Markov chain given in Definition 3.6 is equivalent to a condition
on the powers of the transition matrix. This equivalent condition is frequently taken as
the definition of a regular Markov chain. We state here a result that says our definition
of regular implies the condition, and we provide a proof of the result in the Appendix to
this chapter. The fact that the condition implies our definition of regular is the topic of
Exercise 6.

THEOREM 3.3 If P is the transition matrix of a regular Markov chain, then there is an
integer r such that P* has only positive entries for all integers n > r.

Much of the usefulness of regular Markov chains as models rests on the fact that in
the long run, the state vectors tend to a Bmit: limy,, . X{m) exists. The limit is independent
of the initia] state, it has all pesitive coordinates, and it can be determined by solving a
system of linear equations. These results are the content of Thecrem 3.4, and the proofs are
provided in the Chapter Appendix.

THEGREM 3.4 Let P be the transition matrix of a regular Markov chain. Then

(i) The limit lim,,_, . P™ exists and is a matrix H all of whose rows are the same vector s
(called the steady-state vector for P). The coordinates in s are all posmve
(i) The vector s is a probabslify vector that satisfies the equation s = sP.

(iii) If x is any probahility vector that satisfies the equation x = xP, thenx = s. B

. We note that the convergence of the m-step transition matrices P(m) to a limit whose
rows are all the same means that the m-step state vectors X(m) converge to a limit and that
the limit is the common row of the limit of the transition matrices. The limit of the state
vectors is independent of the initial state vector, This result can be interpreted as meaning
that as the number of transitions increases, the systemn “forgets™ the initial siate, The long-
term behavior of the state vector in a regular Markov chain does not depend op. the imitial
state. The same conclusion need not hold for other ergodic Markov chains.

EXAMPLE 3.13 Consider the mouse moving m a maze as described in Examples 3.3
and 3.4, and determine the probability that the mouse will be in the dark compartment in
the long run. '

‘When phrased in this way, the problem asks for the coordinate of tl're limiting state
vector (if the limit exists) corresponding to the dark compartment. First, the Markov chain
is regular—that is, it is ergodic and each state is of period 1—so the state vectors tend to a
limit. Next, the limit vector can be obtained by finding a probabiliry vector x that satisfies
the system of equations x = xP, where P is the transition matrix of Example 3.3:

S5 0 0
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We write the system X = xP as x(I — P) = O; if we set x = [x; x2 x3 x4], the
system of equations becomes

S =5 0 0

-2 . —.25
(32) Ex1 x'; X3 JC4] 5 3 0 =[0 0 0 D]

0 0 -5 5

The system éf equations (3.2) has mfinitely many solutions. However, we are interested
only in solutionsthat are prebability vectors, and adding that requirement, namely

{3.3) ; 4 atayFxg=1

gives a unique sglution.

The systern bf equations that consists of the four equations (3.2) and Equation (3.3)
consists of five equations in four variables, and a unique solution is determined by any three
of the equations of (3.2) together with Eqation (3.3). Equation (3.3) must be retained, and
we can select any three of the four equations in {3.2). We choose the first three equations
of (3.2) and Equation (3.3). e have

X1+ x4+ x3t+ o xg=1
Sx; — 25x; =0
—.5%; + 5x; — .25)53 =0
— 23x3 + Bx3— 25k =10

_ Solving this system, we find

X = — Xy =

5’

X2 = v X4 =

1 1 1
3’ 3 6

Using this iniomadon, we can answer the original question. The mouse will be in the
dark compartment, compartment 1, about % of the time in the long run. ::}

Remark The system of equations x == xP, or X{I — P) = 0, has the unknown vector x
on the left and the matrix on the right. This is a departure from the common notation for
systems of equations, and it arises from the way we define transition probabilities. It is
common for syst{ems of linear equations to be written with the variable x on the right—that
18, in the form Ax = b, where A is the coefficient matrix for the system.

Exercises 3.3

1. Transition matrices for ten Markov chains are shown below. In each case, write the
transition matrix in canonical form and find the period of each state. If the chain is

3.3 Classification of Markov Chains 133

regular, find the steady-state vector. Which chains are ergodic but not regular? -

o D 1 0 0 o o 10 0 2 0 %80 0
0 0 1 0 0 0 4 0 6 0 0.0 1 0 0
a.l 0 8 0 0 2 b.!{2 30 35 0 ¢|0 8 00 2
4 00 0 6 0 50 1 4 00 4 0 6
10 00 1 0 Lo o0 1 0] Lo o0 010
"0t 0 00 o1 0 0 07 o0 2 0 .8
001 00 00 0 0O 1 00 00 1]:
dls 00 50 e 0 0 0 1 O £l1 0 00 O
000 01 90 4 0 6 01 00 0
001 00 2 0 0 8 0] 00 0 1 0}
c 0 0 1 0] r[o 0 1 0 0] ro 1.0 0 0O
0 0 1 0 0 0.50 0 5 8 00 2 0
g0 5 0 5°0 hig8 00 2 0 il0 0 0 6 4
00 8 0 2 o 00 1 0 0 01 0 0
10 0 0 0] |0 1 0 0 0] 0 8 0 0 2|
(5 0.5 0 0]
J 0 1 0 2
o5 0 1 4 0
0 1 0 0
¢ 1 0 0 0]
2. A transition matrix for a Markov chain is shown below. Write this matrix in canonical
form.
"0 01 0 0 0 0 07
‘6 20 2 0 0 0 0
9 10 0 0 0 0 0
0O 00 1 0 0 0 0
000 02 5 30
0O 00 .1 6 0 0 3
0O 0OC O 0 0 1 O \
000.01000_ i

3. Tn the setting described in Exercise 11 of Section 3.2, find the long-range probab1hty
of the marmot being m each of the areas.

4. In the setting described in Exercise 13 of Section 3.2, find the leng-range probability

that the fiip is made with the biased coin.

5. Show that if P is the transition matrix for'a ® VIarkov chain and H is a matrix with ail
rows equal to the same probability vector W, then PH is a matrix all of whose rows are
the vector w.
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6. Show that if P is the iransition mattix of a Markov chain for which there is an integer r
such that P* has only positive entries, then the Markov chain is ergodic and of period L.
Tha is, the Markov chain is regular according to Definition 3.6.

7. Let P be theétra_nsition matrix for a Markov chain, and suppose there is an integer r
such that all entries of P’ are greater than h > 0. Show that for all integers m > r, the
entries of P'™ are also greater than k.

8. Amy is studfring the feeding habits of a certain bird. She observes that the bird always
comes the first day she makes food available. After that, however, whenever food is
available the pattern of feeding is as follows:

« If the bird feeds one day, then it never feeds the next day.

= If the bird feeds on day n — 1 and does not feed on day », then it feeds on day n + 1
with probability .75 and does not feed on day n + | with probability .25.

» If the bird feeds neither on day n — 1 not'on day #, then it feeds on day » + 1 with
probability .85 and does not feed on day 7 + 1 with probability .13.

{a) Formulaie a Markov chiain model for this situation.

{(v) In the long run, on what fraction of the days does the bird feed?

9. TIn the situation of Exercise 8, suppose the first two parts of the feeding pattern remain
the same butf the third part is replaced by the fellowing:

» Tf the bird feeds neither on day = — 1 nor on day a, then it feeds on day » + 1 with
probability p and does not feed on day # + 1 with probability 1 — p.
{a) Formulate a Markoy chain for this situation.
(b) After an extended period of feeding, the probability that the bird feeds on a particular
day is 2 function of p. Find this function and graph it for0 < p < 1.

10. Suppose that a mouse moves in the maze shown in Figure 3.7 and that observations

are made every 5 minutes and every time the mouse moves from one compartment -

to another. Assume that the mouse remains where it is with probability .4 and that
whenever it has a choice, it is three times as likely to move to a darker compartment as
to a lighter one. In the long run, what is the probability that it is in the compartment
with low illumination?

11. A computericonsultant allocates her time in one-week blocks amang two employers
and vacations. She is very well paid by employer A, but she dislikes the work. She
enjoys working for employer B, but the pay is pocr. She always takes 2 week of
vacation when she shifts from one employer tc the other, and she never takes more
than one week of vacation at a time. If she is on vacation, then she selects an employer
at random, and A is selected with probability .6. If this is her first week working for
employer A; then she will take & vacation next week with probability .2, and if she
has worked for employer A for two weeks (or more), then she will take a vacation
next week with probability .5. If this is her first week working for employer B, then
she will take a vacation next week with probability .1, and if she has worked for
emplover Bifor two weeks (or more), then she will take a vacation next week with

probability 3 Suppose she starts by taking a vacation and then beginning to work for.

emplover A
(a) Formulate a Markov chain model for this sitvation and find the transition 1natrix.
(b) In the long ren, how much time does she spend on vacation?
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34 Absorbing Chains and Applications
to Ergodic Chains

In Section 3.3 we introduced a classification of Markov chains, and we considered the
special case of chains (ergodic and regular Markov chains) with the property that any two
states are mutually accessible—that is, the states form a single equivalence class. Those
chains that have at least one pair of states that are not mutually accessible are more coinplex,
and the behavior of systems modeled with such chaing shows a great deal of varicty. Rather
than conducting a systematic study of these more general chains, we turn to another special
case: Markov chains in which one or more. of the equivalence classes of states consist of a
single state. As we shall see, these chains are also very useful as models.

Definition 3.7 A state i of a Markov chain is an ahsorbing state if p; = 1. A Markov
chain is said to be an absorbing Markov chain if

1. There is at least one zbsorbing state, and

2. For each nonabsorbing state f, there is an absorbing state &£ and a number m of steps
such that the probability of making a transition from j to k in s steps is positive—that
is, pjx(m) > 0. :

The definition of an absorbing state means that state { is absorbing if the ith row of the
transition matrix has a 1 in the 7th column, and then, necessarily all other entries in the ith
row are 0. Entries in the ith row and the ith columnn are said to be on the main diegonal
of the transition matrix. It is important fo note that a state j with a 1 in the jth row of the
transition matrix in a position other than on the main diagonal is not an absorbing state.

~ Condition 2 of Definition 3.7 can be stated as follows: For each nonabsorbing state, it
is possibié to make a transition to some absorbing state in scme number of steps. It is not
necessary that each absorhing state he accessibie from each nonabsorbing state, only that
some absorbing state be accessible.

Tt is conventional to write the canomical form of the transition matrix for an absorbing
Markov chain with the absothing states listed first.

EXAMPLE 3.14 Let P and T be the transition matrices for Markov. chains with five
states. -

0 0 10 0 5 0 3 0 21,
0 1 00 0 6 2 90 2 0,

P=|(0 8 0 0 2/ T=1]3 0 6 0 1] °
4 0 00 .6 0 0 0 1 ¢
0 0 01 0 6 0 4 0 0

For the matrix P, state 2 is an absorbing state and all other states are nonabsorbing. Note
that state 1 is norabsorbing even though the first row has one entry equal to 1 and all other
entries equal to zero; the entry 1 is not on the main diagonal. A similar comment holds for
state 5. The absorbing state can be reached in one step from state 3 and in two or more steps
from each of the other nonabserbing states. Therefore, both conditions are satisfied and P




136 CHAPTER 3 Markov Chains and Related Stochastic Models

is the transition matrix of an absorbing Markov chain. A canonical form for the matrix P,
with states as shown, is

L, T - % B o (]

[ R e R = I oV
O D OO =
DOOHOUJl
—_ 0 O O O &
O m o OO W

For the trans%ition matrix T, state 4 is an absorbing state and zll other states are non-
absorbing. It is possible to reach state 4 in a single step from state 2. However, there is a
single absorbing state, and it is not possible to reach this state from state 1, 3, or 5. Conse-
quently, T is not the transition matrix of an absorbing Markov chain. A canonical form for
the muatrix T, with states listed as shown, is

4 1 3 5 2
411 0 0 0 O
110 5 3 2 0
310 3 6 .1 0
5310 6 4 0 0
2 12 6 0 0 2

Note that the equivalence class of states {1, 3, 3} has the property that once the system
enters the class, i:t never leaves it. <]

Our convention is that the caponical form of the transition matrix of an absorbing
Markov chain has states ordered so that absorbing states are listed first. That is, if there are
N states and k of them are absorbing, then we suppose that the states have been. relabeled

50 that states 1,2, ..., k are absorbing and states ¥ + 1, £ 4+ 2, ..., N are nonabsorbmg.
With this convention, the transition matrix P has the form
(3.4 : P= Lo

A4y =g 0

where Iis a & x k identity matrix whose row and column labels correspond to absorbing
states; 0isa mamx with all entries equal to zero; Ris 2 (& — k) x &k matrix n which the row
labels correspond to nonabsorbing states and the column labels commespond to absorbing
states; the entries:of R give the probabilities of direct wansitions from nonabscrbing states to
absorbing states; and Q) is an (N — k) x (N — k) matrix whose entries give the probabilities
of transitions betﬁveem nonabsorbing states. As usual, the states must be listed in the same
order in the rowsiand in the columns. When we refer to a mansition matrix of an absorbing
Markov chiaii helng written in canonical form, we mean the formn {3.4).

One consequence of writing the transition matrix i this form is that the muoltistep
transition matrices have a particularly simple form—for example,

o I 0
P =P = {Rz QZJ
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where R; = R 4+ QR. In general, for any integer m, m > 2,

I o
(3.5) | mm=W=thJ

where R,, can be computed successively as

(3.6) R, =R+QR, R, =R
o1 as
(3.73 R, =R, +Q" 'R, R =R

Both of these equations for R,, will be useful, as we shall see, The matrix P(m) contains
the m-step transition probabilities, and therefore the entries of Q™ are the m-step transition
probabilities from one nonabsorbing state to another, and the entries of R, are the m-step
transition probabilities from nonabsorbing states to absorbing states.

We note for emphasis that the state labels in the transition matrix in canonical form
may differ from the original state labels. In sitnations where questions about the original
seiting are to be answered, care must be used m keeping track of the changes in state labels.

Several properties of the matrices Q" and R, are useful and will enable us to develop
techniques for answering many interesting questions. We begin with an examination of the
matrix Q.

Suppose we have an absorbing Markov chain with a transition matrix P in cancnical
form, and suppose the system begins in the nonabsorbing state i. If j is another nonabsorbing
state, i % J, then the probabifity that the system is in state j on the first (subsequent)
observation is ;. The probability that it is in state j on the second observation is g;; (2},
and so on. Let E{i, j;m) be the expected number of times the system is in state j given that
it started in state / and continued for m transitions. We develop an expression for E (i, j, m).

For fixed states { and j, define a random variable X; by

X, = 1 if the system began m state { and is in state j after the £th transition
* 7|10 if the system began in state { and is not in state ; after the kth transition

Itfollows from the definition of the expected value of arandom variable that E{X] = g;; (),
fork=1,2,...,m,and

a8 E(, jim) = E[X)] + E[X;] 4+ - + E[X,]
' =50 +gy@ + o ayln) L

If states i and j are the same, then the expression has an additional term as a result of the
fact that the system began in state j:

(3.5 E,iim) =144 +a;@) +- - +4q;0m)

Because ¢ and j couid be any nonabsorbing states, we have shown that the ; j-entry in the
matrix

(3.10) I+Q+Q'+- +Q"
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is the expected number of times the system is in state j given that it started i state { and
made m transitions. Note that the matrix I in (3.10) has the same dimensions as Q.

Tf the system begins in a nonabsorbing state, there is a positive probability that it will
reach some absorbing state, and after doing so, the system reinains there for all subsequent
observations. In fact, as the number of observations increases, the probability of finding
the system. in a nonabsorbing state becomes arbitrarily small, and the probability that the
systern is in an absorbing state approaches 1. Indeed, the probability that the systemisina
nonabsorbing state after m transitions becomes small sufficiently fast {as m increases) that
the series :

ERAD] : I+0+Q°+Q° + -

converges. The Econvergence of the series (3.11), together with the meanings of the partial
sums (3.10) as given in {3.8) and {3.9). gives a highly useful result.

THEOREM 3.5 Ifthe transition matrig of an absorbing Markov chain is written in canon-

ical form as
p T 0
=R 0

then the matrix T — Q has an inverse, and the series I + Q + Q% + Q* + - - - converges to
the mverse of L= Q.

The matrix N = (I — Q) ! is called the fundamental matrix of the Markov chain,
and the i j-entry:in N is the expected number of visits to nonabsorbing state j given that the
systern began in nonabsorbing state ¢ and continued until an absorbing state was reached.
The sum of the :entries in the ith row of N is the expected number of transitions before an
absorbing state is reached. The state labels are those of the transition matrix in canonical
form. : ]

The detailsof arguments justifying this theorem are inciuded in the Chapter Appendix.

EXAMPLE 3.15 An absorbing Markov chain has the transition matrix

o1 0 0 O
2 0 1 .1 .8
o0 o 1 0 0
0 0 1 0
2 2 3 .1 2

{a) If the systefn begins in state 2, find the expected nunber of visits to state 5 before an
absorbing state is reached. '

(b) If the system begins in state 2, find the expected number of transitions before an
absorbing state is reached. . -
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We begin by writing the transition malgix in canonical form.

LA T SO R N V%)
i,-;;_..oo»—‘u.m
o O o O
oo & e o~
[P == S e R an R (S |
oo © O O

Because the question is poséd in terms of the original state labels, we retain those labels
above and to the left of the new matrix. The matrices Q, I — Q, and N are

o 1 0 1 -1 0 1.7 2 15
Q=12 0 b I-9=|-2 1 -6 N=|.7 2 15
202 2 -2 -2 3 6 1 2

Recall that the state 1abels for the first, second, and third rows of 3, I —Q, and N, are 1, 2,
and 3, respectively.

Using the fundamental matrix N, we can answer the questions. The answer to question
(a) is the entry in the second row and third column of N: 1.5. ¥ the system begins in state 2,
then the expected number of visits to state 3 before an absorbing state is reached is 1.5.

The answer to question (b) is the sum of the entries in the second row of N: .7+ 2 +
1.5 =4.2. Tf the system begins in state 2, then the expected number of transitions before an
absorbing state is reached is 4.2, Of course, it may reach an absorbing state in one transition:
There is a positive probability that it moves directly from state 2 to state 3 (or 4). However,
it may also take nore than one transition, and we now know that the expected number
is4.2. B

EXAMPLE 3.16 Consider the small-group decision-making situation deseribed in Sec-
tion 3.1, and suppose we have a group of four individuals and three alternatives. Define
a vote change as a “shift toward consensus” if it results in one of the group composition
shifts: 310 — 400, 220 — 310, 211 — 310. Asswne that an individual who can effect a
shift toward consensus is twice as likely to change a vote as one who cannot. Also assume
that the probability of changing a vote to another alternative is proportional to the number
of individuals voting for that altemative. Suppose the group initially has group composition
211. Find the expected number of vote changes before consensus is reached.

Denote the group compositions 400, 310,220, 211 as states 1, 2, 3, and 4, respectively.
Then a Markov chain model for this situation under these assumptions has transition matrix
(see Exercise 6)

B o N = T ]

D O wita =
i) (O ot O
ww O O O
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This is 4 transition matrix for an absorbing chain, and the matrix is already written in
canonical form. The matrix Q and the fundamental matrix N are ‘

Fila 21

Q=

e e D
=

Gl ) wrlw
oiw D

2

il
[ SUTRSIT
e O O

|

The third row of N is associated with state 4, group composition 211. Therefore, the ex-
]

pected number of transitions before reaching state 1 is £ + %— + % = 365

The matrix N can also be used to determine the probabilities of absorption in the various
absorbing states. To determine how, we return to Equations (3.6) and (3.7),

R.=R.1+Q"'R ad R,=R+QR,,, Ri=R

Suppose that the systein begins in the ith nonabsorbing state. The probabiliry that it is
in the jth ebsorbing state after the first transition is r;;. The probability that it is in the jth
abscrbing state after the second transition is the ij-entry of the matrix R;, and in general,
the probability that it is in the jth absorbing state after the mth transition is the i j-entry of
the matrix Ry,.

Next, from the expressicn Ry = Ry + Q'R we see that Ry, = Ri,—1, where the
symbol > means entrywise inegnality. That is, each of the seqnences of numbers obtained
by fixing i and j and taking the 7j-entry in the mafrix R,, as the mth entry in the sequence
is a monotone nondecreasing sequence of numbers. Moreover, each of these numbers must
be less than or equal to 1 because the rows of the m-step transition matrix are probability
vectors. Therefore, each of the sequences of nunbers converges, and so the sequence of
matrices {R,,} converges. Define the matrix A to be the limit of the sequence {R }:

A= lim R,
N m—=oQ

Tt follows from the discussion of the ineaning of the entries in R, that the {j-entry of

the matrix A has the following interpretation:

If an abscrbing Markov chain is initiaily in state ¢, then the probability
that it ifs absorbed in nenabsorbing state ; is the ij-entry of the matrix A.

Here as elsewhere in the discussion, it is important to remember that the references to states
i and j refer to ithe states of the matrix in canomical form, and references to the original
state labels must be translated into the new state labels.

The definition of the matrix A giver zbove is as a limit—not particularly well suited
for computation—and it is useful t¢ have an alternative means of determmining A. There
is an expression; for the matrix A that involves only the matrices R and N. To determine
the expression, we recall that R, = R+ QR,,_;, and if we take the limit of both sides as
m —» CO, We have

N

A=R+QA

From this we have

A-QA=(I-QA=R
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Finafly, because the inverse of I — Q exists and is equal to N, if we multiply both sides of
the expression (I - Q)A == R on the left by N, we have A = NR. We summarize this result

as a theorem.

THEGREM 3.6 Suppose that the transition matrix of an absorbing Markov chain is
written in canomical form as
P I o
=R 0

and that N is the fundamental marrix for P, Then the entry in the ith row and jth column of
the matix A = NR is the probability that the sysfem is absorbed in the jth absorbing state
given that it began in the-ith nonabscrbing state.

EXAMPLE 3.17 An absorbing Markov chain has the foﬂow'mg.transirion matrix.

oo 35 0 5
0001 0 00
2 1 2 1 4
0o 0 1 0
d 1 0 6 2

If the system is initially in state 3, find the probability that it is absorbed in state 4.
‘We rewrite the transition matrix with the states hsted mthe order 2,4, 1, 3, 5. Then the
matrices O, R, and I are

0 5 .5 0 0 ) 1.28 .80 1.20
Q=12 2 4 R=1.1 .1 N= .40 150 1.00
1 0 2 1.6 16 10 1.40
Therefore, the matrix A = NR is
20 .80
A= |25 75
15 .85

To complete the example, we need to identify the entry of A that gives ‘the probabilicy of
absorption in state 4 given a start in state 3. The states have been relabeled in the order 2,
4, 1, 3, 5. Therefore, state 3 corresponds to the second row of the matrix A, and state 4

corresponds to the second column. It foliows that the desired probability is:.75. ]

B Applications of Absorbing Chains to Ergodic Chains

One of the common uses of the ideas and techniques imtroduced here for absorbing chains
i3 to determine useful information about ergodic chains. In many situations we can do
80 by constructing an absorbing Markov chain that is based on the ergodic chain and the
information desired.

Consider an ergodic chain with transition matrix P. By the definition of an ergodic
chain, for any states ¢ and j, there is an integer m such that the probahility of making a
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transition from state { to state j in m steps is positive, What is the expected number of
transitions to first reach state j given a start in state i ? To answer the question, we constrct
an abserbing chain with the same states, with transition matrix P that has the same rows
as P with the exception of the jthrow. The jth row of P’ has a 1 on the main diagonal and
zeros in all other entries. That is, we have replaced state j by an absorbing state. Transition
probabilities among all other states are as in the original chain, and, in particulaz, transition
probabilities into the new state j are the same a3 those into the old state j. The absorbing
chain behaves asffollows:

« If the system begins in state j, then it remains there

« If the systemn begins in state i, i # j, then it proceeds just as in the originai ergodic system

until it reaches state j for the first lime. Omee in state j, it rernains there.

Because the original system was ergodic, it is possible to reach state j from every other
state, and the new process satisfies the conditions for an absorbing Markov chain.

Next, write the transition matrix for the new chain in canopical form and find the
fundamental matrix N. By Theorem 3.5, the entries in N give the expected number of times
the system is ineach nonabsorbing state prior to reaching the absorbing state (there is a
single absorbing;state in this case). Interpreting this in terms of the original process, we see
that these pumbers give the expected number of times the systemn is in each state {, i 3£ j.,

before it first reaches state ;.

EXAMPLE 3.18 A regular Markov chain has the transition matrix

25 25 5 0
p |0 2552
Tl 25 500

25 .0 5 25

Tf the systein is initially in state 2, find (a) the expected number of visits to state 3
before it first reaches state 4, and (b) the expecled number of transitions before it first
reaches state 4.

Because this is an ergodic Markov chain (gvery regular chain is ergodic), we can answer
the question by comstructing an absorbing chain, We are interested in what happens before
the system first reaches state 4, and we construct an absorbing chain by replacing state 4
with an absorbing state. The transition matrix for the new absorbing chain i3

25 325 5 0
0 25 .5 25
25 25 5 0
0 o0 0 1
Writing this matrix in canonical form yields

' 4 2 1 3
4 1 0 0 0
2 125 25 0 5
1 0 25 23 3
3]0 25 25 5
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where the original state labels are as shown. The matrix Q and the fundamental matrix N
are :

‘ 25 0 05 4 2 6
Q=125 25 5 N=|4 4 8
25 25 5 4 3 9

The rows and columns of the matrizx N correspond to states 2, 1, 3, in that order. Conse-
quently, we conclude that if the system begins in state 2, then the expected number of visits
to state 3 before it reaches an absorbing state is 6. Thus, in the original setting the expected
number of visits to state 3 before first reaching state 4 is 6.

Also, if the absorbing cham begins in state 2, then the expected number of transitions
before it is absorbed is 4 -+ 2 + 6 = 12. Consequently, in the original setting the expected
number of transitions before the system first reaches state 4 is 12. : B

EXAMPLE 3.19 Consider the situation described in Example 3.3 of Section 3.2, in
which a mouse moves in a maze with compariments illuminated at different levels. Assume
that half the time the mouse is in the same compartment on successive observations, and
half the time it moves from its starting compartment to an adjacent compartment between
observations. If it moves, then it is equally likely to move 1o any compartment open to it. If
the mouse begins in compartment 1 (see Figure 3.7), find the expected number of transitions
before it first reaches compartment 4.
The transition matrix for this system, determined in Example 3.4 of Section 3.2, is

Because the task is to find the number of transitions before the system reaches state 4,
we construct an absorbing Markav chain with state 4 replaced by an absorbing state, The
transition matrix for the new chain is ’

0o ¢ 0 1 ,

We write the new transition matrix m canonical form, and we label the rows and columns
with the original state labels to retain that information. We have

4 1 203

4 i1 o 0 0

P = 110 5 5 0
210 25 5 25
3125 0 25 5
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The fundamental matrix for this chain is

N =

— k3 W

2
4
2

(UG Sl

The system began in state 1, and state 1 corresponds io the first row of this fundamental
matrix. The sum of the entries in the first row is 6, and consequently, the expected rumber
of transitions before the system first reaches state 4, given that it begins in state 1,is 6. B

In Examples 3.1 and 3.19 we have used the technique of creating a new Markoy
chain with an absorbmg state to determine the expected number of transitions before the
systetn first reaches a specified state. The same technique can be used to find the probability
that the system visits state i before state j. For example, given an ergodic Markov chain
and a specified starting state (different from states 7 and j), we can find the probability
that state i is visited before state j by creating a new Markov chain with states { and j
absorbing—as it Examples 3.18 and 3.15—and then using the associated matrizx A as in
Example 3.17.

Exercises 34

1. Transition matrices for six Markov chains are shown below. In each case determine
whether the Markov chain is absorbing, and wiite the transition matrix in canomcal
form. If the chain is absorbing, find the fundamental matrix N.

m 1 0 0 0 00 0 1 0
00 .50 3 001 3 1 5
a.id 0 1 0 Q b.j0 O 1 0O O©
180 20 © 4 0 0 2 4
01 00 © 0 0 0 8 2
71 0 0 0 0] 1 0 0 0
' 0 0 5 5 DL 0 0 0
e¢|0 0 0 0 1 dl0 0 0 4 6
53 5 0 0 D 000 1 0
0 5 .5 0 0] 50 5 0 0
0 1 0 0 ™ 0 0 1 0
0 4 0 6 0 0 100 0
e |.1 0 .1 O .8 £/1 000 0
0 D 0 1 0 0 100 0
0.5 0 0 .5 12 000 8

2. The transition diagram for a Markov chain is shown in Figure 3.15,
(a) Find the transition matrix and write it in canonical form.
(b} Tf the system is imitially in state 2, fnd the expected number of transitions before it
first reaches an absorbing state.
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Figure 3.16

3. A Markov chain has the transition diagram shown in Figure 3.16. Describe the behayior
of the Markov chain in as much detail as you can, including {to the extent possibie}
information on the long-run behavior of the state vector. To what extent does the long-
run behavior depend on the initial state vector?

4. A transition matrix for a Markov chain is shown below.

0 1 0 0 0

]

OO oo Cc o oo
(=R o BN = N = I o I
O O Do Cc o oo

C oS O O - i,
[ R R R e R T
[l e B T e
(=R =R SRR = I = I =
_—0 O o O O

0

(&) Write this matrix in canoirical form.

(b) Find the fundamental matrix for your canomcal form.

{c) If the process is initially in state 2, find the expected number of transitions before
it first reaches an absorbing state.

(d} If the process begins in state 8, find the probability that it is absorbed in state 4.

(e) If the process begins in state 8, find the probability that it is in state 3 before it is
absorbed.

(f) If the process is initially in state 3, find the expected number of visits to state 1
before it is absorbed.
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5. A ransition: matmix for a Markov chain is shown below.

o
[euw]
<

R A R o R« L= == -
[ IR - T S S e e R =R e

= R R == o R on B e Bl e S e R S )
=R R R R R e B
=== = N R
O C @ i@ @
T e S TP S A B SE S o B o T )
P R R I e I R o R o)

o T e T e T o T i B v s s B
o0 0 O h o= O 0o

(a) Write this matrix in canonical form.

(b) Find the fundamental matrix for your canonical form.

{c) If the process is initially in state 5, find the expected number of transitions before
it is abgorbed.

(d) If the proceass begins in state 2, find the probability that it is absorbed in state 9.

{ey If the process begins in state 2, find the probability that it is in state § before it is
absorbed.

(£) If the process is initiaily in state 1, find the expected number of visits to state 5
before it is abscrbed.

. Consider the small-group decision-making situation described in Section 3.1, and sap-

pose we have a group of four individuals and three alternatives. Define a vote change

a5 a “shift toward consensus” if it resulis in one of the group composition shifis:

310 — 400, 220 —» 310, 211 — 310. Assume that an individual whe can effect a

shift toward consensus is twice as likely to change a vote than one who cannot, Also

assume that the probability of changing a vote to another alternative is proporticnal to

the pumber of individuals voting for that alternative. Suppose that the group initially

has group composition 211. Formulate a Markov chain model for this situation, find

the trapsition matrix, and find the fundamental matrix.

. Consider & smail-group decision-making situation similar to that described in Sec-

tion 3.1 with six individuals and three alternatives. Formulate a Markov chain model

under the fo]lomng assumption: An individual who is the only person voting for an

alternative is twice as likely o change her vote as a person who is one of 4 group of two

or more voting for an alternative. If an individual changes her vote, then the probability

of changing to an alternative is proportional to the number of individuals voling for

that alternative. )

(a) Ifthe g:'roup is initially divided 3, 2, and 1, find the expected number of vote changes
beforeéconsensus is reached. .

(b) If the group is initially divided 2, 2, and 2, find the probability that at some point
itis divided 3, 3, and O before consensus is reached.

. From one academic year to ancther, each student at Gigantic State University moves
on to the next class, flunks out, or remains in the same class with probabilities p, g,
and r, resp_ectlvely. A student is said to be in state 1 if graduated, 2 if flunked out, 3 if a

10.

11.

12.

13.
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senior, 4 i a junior, 5 if a sophomore, and 6 if a freshman. Formulate a Markov chain
model for this sitnation, and then answer the following:

(a) Find the transition matrix.

by f p=.7,q = .2,and r = .1, find the fundamental matrix.

(c) With p, g, and r as iz (b), how long does a student need to be in college before
there is a better than even chance of his or her graduating?

. A marmot lives in the region shown in Figure 3.6. Suppoese the marmot is observed

every hour and each time it moves from one area fo another. Also, suppose that it
will be observed in the same location on successive observations with probability .2.
If it moves, the probability of its moving to an area is proportional to the number of
resources available to it in that area in comparison to the numher of resources available
to it in the adjoining arcas. The areas bordering the pond have water in addition to the
other resources specified, and the marmot is never actualily in the pond.

(a) Formulate a Markov chain model for this situation.

(b) If the marmot begins at its den in the rock pile, find the expected number of
observations before it first reaches the marsh.

(c) If the marmot begins at its den in the rock pile, find the probabilify that it reaches
the forest without going.through the marsh.

Joe and Jess play a game as follows: An unfair coin with Pr[H] = .6 is flipped
and the result is noted. If it comes up heads, then Jess pays Joe one dollar, and if it
comes up tails, then Joe pays Jess one dollar. If each player has money, then the coin
is flipped again. The game ends as soon as one player has all the money. When the
game begins, Joe has one dollar and Jess has three dollars. (See also Exercise 15 of
Section 3.2.)

{a) Find the expected number of plays before the game ends.
(b) Find the probability that Jess wins the game.

There are six balls, three red and three green, distributed between boxes labeled 1 and
2, with three balls in each box. A game is played as follows: A ballis selected atrandom
from each box. The ball selected from box 1 is placed in hox 2, the ball selected from
hox 2 is placed in box 1, and the colors of the balls in each box are noted. Then two
more balls are selected, and play continues. When the game begins there are two green
balls and one red ball in box 2. Find the probability that all balls'in box 1 are green
before all balls in box 2 are green. (See also Exercise 14 of Section 3.2

An unfair coin with Pr{H] = .4 is flipped repeatedly, and the result of each flip is
noted. Find the expected number of flips before there are three consecutive heads for
the first time. :

Each morning Reba decides how to get from her apartment to the university. She can
walk, bike, take the bus, or ride with a fiiend who also has an 8:00 a.m. class. It is too
much work to plan in advance, so each mormning she makes a random choice subject to
the following conditions:

¢ If she walks on one day, then the next day she walks with probability .4; all other
choices are equally likely.

« If she rides the bus one day, then the next day she is twice as likely to ride the bus as
not; ail other choices are equally Likely.
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« If she tideé with a friend one day, then she does not ride with a friend next day; all
other choices are equally likely.

« If she rides her bike cne day, then she always walks the next day.

If she rides with a friend on Monday, find the expected number of days before she first

rides the bus.

Chapter Appendix: Mathematical Details

The primary focus of this book is on modet building. However, there are times when a
slightly deeper look into the mathematical aspects of the madels yields interesting and
useful jnformatibn_ Thus, in this Appendix we consider in greater detail the following
topics that were introduced but not explored in Chapter 3.
1. The relation between Markov chains that are ergodic and of period 1 and Markov chains
with a transition matrix P for which some power P has only positive entries.
2. The long-run behavior of the powers of the transition mateix of aregular Markov chain.
This result can be used to give information on the leng-run behavior of the state vector

for a regnlar Markov chain.

3. The behavior of the powers Q™, where Q is the matrix of transition probabilities among
the nonabsorbing states in an absorbing Markov chain, and the invertibility of the matrix
1—Q. '

Tt is the details of the second and third topics that are most likely tc be useful, and
we begin with them. (The details of the proof of Theorem 3.3 are included primarily for
completeness, although they do provide sorme insights into the structure of Markov chains
with pericd 1.} :

Proof of Theorém 3.4 The hypothesis of the theorem is ihat we have & Markov chain with
a transition matrix P and an integer » such that P7 has only positive entries. We show that
there is a probability vector s such that

(3.12) _ Hm P’ =

]
5

To this end; let r be an integer such that all enfries in P’ are positive—say all are greater

than & > 0. It follows that all entries of P™ are greater than 4 for all m > r (Exercise 7 of

Section 3.3). Consider the first cofumn of P™ and depote it by pl{m). Set
: s(m) = min{pi(m), i =1,2,...,N} and
_ t(m) = max{py(m), i =1,2,..., N}
Thus s (m) 1s the smallest probability that the system is in state 1 on the mth observation

given a start inistate 1,2,..., N, and t(m) is the largest such probability. The following 18
a useful fact about Markov chains, and it will be helpful in verifying our result.
The séquences {s(m)}.and [#(m}} are mnonotone mcreasing and monotone -
decreasing, respectively. That is, sim+1) =s(myandz(m + 1) < t{m)
form=1,2,3,....
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To confirm this monotonicity, we denote by p; the ith row of the matrix P, and we note
that

s(m+1) =min{pnim+ 1), i=1,2,..., N}
= min{p; -p'(m), i = 1,2, ..., N}

Also, since p; is a probability vector,

N N
PP =D pypalm) Zs(m) Y py = s(m)
=1 =
and consequently the minimum of these inner products—which is s(m + 1)—must also be
greater than or equal to s(m}. The proof that ¢ (m <+ 1) < #(m) is similar.

Returning to the proof of the Theorem, we have s(m) < t{m) < ¢{1) for ail m, and
consequently {s(7n)} is an increasing sequence of real numbers that is bounded above. By
a funda:nental property of teal numbers, the limit lim,, ., 5(m) exists, and we denote the
himit by s. Also, the sequence {(m)} is monotone decreasing and #{m) = s(m) > s(1),
and consequently lim,,_. ., #(m) = t exists. Because s(m) < #(m) for ail m, we conclude
that s < t. If s = ¢, then we have shown that the entries in the first column of {P7} all
converge to a cormmon limit as 7 increases. We show that the remaining possibility, s < ¢,
is impossible. In this case, the sequences [s(m)} and {z(m)} and the limits s and ¢ are as
shown in Figure 3.17.

Now set d = t — 5, and note that we are assuming o > 0, We complete the proof by
showing that s(m) increases by more than a fixed amount—an amount depending on 7 and
d—in each sequence of r transitions. In fact, we show that if

Lopgm)>hforl<i<Nandm>r,
2. s(my<s <t <it(m)forallm, and
3. t—s=d,

then
sim 7y >s(m)+hd form=1,2,3...

To verify this, we let & be an index for which s(m + 7} = pg(m + r). We let u be an
N-vector all of whose coordinates are 1. Then form = 1, 2, ..., we have

sim +r) =pelr) - p'(m)
= pe(r) - [pHm) — s(myul + s (my(pe(r) - W)
> s(m) +max{py; (N ppm) —s(m)l, j=1,2,..}
> s(im) + hd ‘

TI'he second inequality results from the fact that at least one of the terms p;i(m) — s{m)
is as large as d and all of the py;(r) are at least as large as i To see that s </ is

N A

o {s(m}} t {tim} 1
Figure 3.17
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impessible, we' argue as follows: Because s(m) — 5 as m — 00, there is an integer
myg such that s(m) > s — hd/2 for all m > mg. However, the above argurment shows that
sim+4r) > s(m) +hd > s + hd/2 for all m > my. But this is 1mpossible by the meaning
of s.

The proof that all entries in the first coluwmn of {P*} tend to the same limit is complete.
Also, because 5 (7} > 0, that limit must be positive. The same proof can be applied to entries
inthe second, . ; ., N'th colurnns of {P7}. The limit for each column will, in general, depend
on the column mdex The verification of Equation (3. 12) is complete, and this is part (i) of
Theorem 3.4. '

For part (11;) of Theorem 3.4, we let H denote the matrix hm,,_, ., P™, a matrix all of

whose rows are the same vector 5, We write P71 = PP, Next, let m tend to infinity in

this expression, and use Equation (3.12). Then H = HP, and the first row of cach side of
this expression gives s = sP. .

For part (i) of Theoremn 3.4, let xbe a probablllty vector that satisfies x = xP. If we
multiply each side of this equaticn on the right by the matrix P, we have xP = xPP = xP?,
and because x = xP, we have x = xP2. Continuing in this way, we have x = xP" for
m =12,3,4, ... Letting m tend to infinity and using Equation (3.12), we have

Finally, because x is a probability vector, the sam of the coordinates in % is 1, and conse-
quently the right-hand side of the expression just above is s. B

Proof of Theorem 3.5 We show first that if P is the transition matrix of an absorbing
Markov chain written in canomical form,

I 0
P=
R Q
then the matrix I — Q is invertible. We do so by showing that the infinite series in expression
(3.11)

I+Q+Q +Q° +

converges and that the matrix N . defined as the sum of the series, is the inverse of I — Q).
First we show that limy ... Q® = 0. Begin by noting thar the multistep transition
matrices have a particularly simple form. Indeed, as shown in Equation (3.5), we have

P’”—{I 0]
=r. o

where the entries in R, are the multistep trapsition probabﬂities from nonahsorbing states
to absorbing stdtes, and the entries in Q™ are multistep transition probabilities within the set
of nonabsorbiug states. Because there is a positive probability of reaching an absorbing state
fromn each nonabsorbing state, for each nonabsorbing state ¢ there is an integer m depending
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on i such that the row in R,, commesponding to state { has a positive entry. Also, because the
columns of R, correspond to absorbing states, once an entry in R, is positive, it remains
positive for all larger integers m. For each state 7, let m () be an integer m determined as
above, and let M = max{m () for all nonabsorbing states 1}. Then each row of Ry, has at
least one positive entry. Let 2 be the smallest positive entry in R,;. Then each row in Q¥
has coordinates whose sum is no larger than I — % < 1, and, in particular, each entry is no
larger than 1 — A

It follows that each entry in Q* QY = Q¥ is no jarger than (1 — A)?, and, in general,
each entry in Q*" is no larger than (1 — A%, Next, consider the sequence {(Q}. For each
column in Q™, the sequence of largesi entries forms a monotone decreasing sequence, and
consequently the entries in each column of Q™ tend te zero, and therefore lim,, . Q7 =

The estimates on the size of the entries in Q" derived just above enable us to show
that the series I -+ Q + Q* + Q° + - .- converges. Indeed, for each position in the sum
of matrices (3.11), the associated series of numbers consists of M consecutive enfries each
less than 1 — A (which is less than 1), followed by another M consecutive entries each
less than (1 — k)2, followed by another M consecutive entries each less than (1 — kY, .. .;
and the resulting series of numbers converges. The entries in each position in the series
I+Q+ Q* + Q° + - converge, and therefore the infinite series of matrices converge.
Denote the sum by N. Finally,

A-QU+Q+Q + Q@+ +QM =1- Q!
Becanse lim,, ., ., Q7 = 0, it follows that
Jim J-QI+Q+ Q" +Q +--+Q" = m I-Q"") =1
and therefore,
I-Q) ImI+Q+Q +Q +-- + Q) =01~QN=1

A similar argument shows that N(I — Q) = L. Therefore, (I — Q) is invertible and
T—-Q =N, =

Proof of Theorem 3.3 The goal is to show that if P is the transition matrix of an ergodic
Matkov chain with period 1, then there is a power of P all of whose entries are strictly
positive, The proof is based on a result from elementary nuinber théory concerning the
greatest common divisor of a set of integers:

If d is the greatest common divisor of a set of integers {ny, 2, 513, .. ., 7z}
then there are integers xi, &z, Xa, ..., X such that

(3.13) d=nx trgxy - +pxg

Suppose that the integers n; are labeled so that all the positive x; occur before any
negative ones, Then d can be written as the sum Ny — N,, where Ny is the portion of the
sum {3.13) that includes all positive x,, and —N; is the porticn of the sum that includes all
negative x;. If the greatest common divisor is 1, then 1 = Ny — N;, with N; and N, defined
as above.

Set N = N7 Any integer n > N can be written asn = N + k == N} + %k, withk a
nonnegative integer. We write k = aN, + b, with 0 < b < N; and @ equal to the integer j
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that satisfies 7V < k < (j + 1}N;. With @ and b defined in this way, we have
n=Nj k=N +aNy+b=N;+aN,+b(N —No) = (Ny+a— BN, + N,

which gives us aTepresentation of n as a linear combination of Ny and N, with positive coef-
ficients. Thus, for any intcger n > N, we have arepresentation of  as a linear combination

of the integers {n, na, 53, . .., 7z} with positive coefficients.

Now, for a specific state ¢ with period 1, Iet {n1, na, 73, ..., m;} be integers such that
puing) > Oforj = 1,2,..., k, and the greatest common divisor of {7, ny, n3, ..., ng}
is 1. Then for every sufficiently large n, there are positive integers y;, j =1,2,..., k, for

which we have

: k k
Pi(n) = pu(na + yana + 8 ) > prf(}’j??j) > Hpii(nj)yj >0
‘ j=l j=1

1t follows that for any states { and j and any integer m such that p;;(z) > 0, we have
i m 4+ n) = pi(n)pi;(m) > 0 for all sufficiently large integers r.

We now have enough information to compiete the proof of Theorem 3.3. For every pair
of states i and /. there is an integer m depending on ¢ and j and denoted by m(i, j} such
that p;;(m (i, /¥ > 0. By the result just above, py; (m(Z, j) +nj > 0 for all sufficiently
large n. Let M be the maximum of m (7, ) over all pairs 7 and j, let N be the maxirmun of
the integers N2 (there is a value of N, for each state), and define M* = M + N. Then

Py (M = py(m(i, [+ M™ —mii, ) = py(m{, ) pa (M —m{i, j).
Now py(mi, j)) = Oand M* —m(i, j) = N +[M —m(i, j)] > N, and consequently

both factors on the right-hand side are pesitive. This shows that p;; (M™) > 0 for all states
i and . : B

crapterd

Simulation Models

40 Introduction

In this chapter we discuss in more detail the computer implementation of models used to
study activities or processes by imitating or simuiating their actual behavicr. We introduced
the broad ideas and provided examples in Section 2.6. In this chapter we continue the
discussion in greater depth. Qur view, however, is that simulation is just one of & number
of mnodeling techniques, and therefore we consider only the basic aspects.

Simulation models are widely used and their populanity is increasing. Many systems
of current interest are large and cornplex, and simulation models may be a very effective
way to gain insight. Indeed, software that facilitates simulation has become increasingly
cornmon, and the cost of computing continues to decline. Consequently, simulation medels
have become 2 very attractive option as an aid to understanding complex systems. Because
the development of simulation models for complex systems is a time-consuming task, a
number of special-purpose simmulation languages have been created to reduce the effort.
Often these languages are designed to handle a relatively restricted class of sitnations, but
to do so in 2 convenient and efficient way. Our goal is to iliustrate the fundamental concepts,
50 we use only widely available computer software: the scientific software package MAPLE
and the spreadsheet EXCEL,; there are many alternatives to both.

41 The Simulation Process

The simulation process is intended to help us undesstand the behavier of a system by using
a computer to imitate its behavior or certain aspects of its behavior. Although the term
simulation is sometimes used to refer to the use of a computer in models for completely
deterministic situations—that is, models in which a specific set of inputs always yields the
same set of outputs—we will use the term numerical model or computational moedel for
such situations. We will reserve the term simuedation model for situations in which some of
the quantities or aspects of the system being studied are described in probabilistic terms. In
such situations, the output data are themnselves random, and consequently we can obtain only
estimates of the actual behavior of the system. For instance, some of the population models
studied in Section 2.2 are numerical models in the sense that the model is deterministic
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