
CHAPTER 3 

Markov Chains and Related 
Stochastic Models 

3.!l Introduction 
Mathematical models are either deterministic or stochastic, and some settings can be repre­
sented with both deterministic and stochastic models. However, in many situations arising 
in the social and life sciences, there are phenomena for which stochastic models are the 
appropriate ones. In particular, in many circumstances the behavior of plants, animals, and 
people exhibits a degree of randomness that must be built into the models if predictions are 
to correspond with observations. There are a great variety of stochastic models-that is, sets 
of assumptions-that can be used to study these situations, and in this chapter we examine in 
detail only one rather special case. This special case, Markov chains, has proved to be widely 
applicable and a reasonably effective way of modeling many situations arising in the real 
world. Even in circumstances where detailed predictions based on the model differ from 
observations, we frequently gain insight into the process by studying these simple models. 

We introduce the models studied in this chapter through a number of examples from 
a variety of settings. We then present the mathematical concepts and notation that we use 
in analyzing these situati<;ms. Finally, we develop parts of the theory of the models for two 
especially important subclasses of moi;iels. Throughout, we use the situations introduced in 
Section 3.1 to illustrate and apply our methods. 

3.1 The Setting and Some Examples 
A basic assumption we make throughout this chapter is that all situations we study have the 
property that we observe a system sequentially through time, and that at each observation 
the system can be determined to be in one of a finite number of states or to be satisfying a 
fillite number of conditions. This is an assumption about our ability to classify circumstances 
or behaviors in useful ways. It is probably most effective to illustrate the notion through 
examples. 

l!!l Animal Ranges 
Consider a locale consisting of rocks, scrub brush, open meadow, and a stream (see Fig­
ure 3.1), and suppose that this 1.;Cale is home for a small animal, say a marmot. We seek 
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Figure 3.1 

to model the movement of the marmot through time by noting its location at sequential 
observations and then forming a mathematical system that represents these movements in 
an appropriate way. 

The use of a figure such as Figure 3.1 includes an assumption that the area can be 
partitioned meaningfully into the subareas shown, and we also assume that when an ob­
servation is made, we can determine which subarea contains the marmot. These may seem 
like natural and perhaps trivial assumptions, but in many experimental situations they are 
difficult to interpret or verify. For small animals, the task of keeping track of the creature 
may be a challenge, and for large animals, for wbiCh the use of tracking collars may help 
with the location problem, we may have the animal moving through many different subareas 
of its range. Also, if observations continue over an· extended period of time, the nature of a 
specific area may change. Brush may become meadow, or during a very wet season, a part 
of the meadow may disappear into the stream. However, such issues are not a direct part of 
our current model, and we do not consider them further. 

We suppose, therefore, that the location of the marmot can be tracked through time and 
that a sequence of observations can be represented as a sequence of locations and occupancy 
times. For instance, using the shorthand R, B, M, and S to denote the rocks, brush, meadow, 
and stream, respectively, then we might represent a particular sequence of observations by 
a sequence of letters (the locations) and numbers (the occupancy times): 

R - 34.2 - B - 12.3 - R - 2.4 - B - 21.8 - M - . 

Tiris sequence is to be interpreted as follows: When observations begin, the ~armot is in the 
rocks, and it remains there for 34.2 minutes. It then moves to the brush, whefe it remains for 
12.3 minutes, after which it again moves to the rocks, where it remains for 2.4 minutes, and 
so on. Although occupancy times play an important role in many models, we can illustrate 
the basic ideas of the model-building and analysis process by concentrating on the locations 
alone. Also, if (as is frequently the case) observations are made at discrete times, then the 
observational data consist solely of a sequence of loCations. Depending on the criteria 
used to make observations, locations may or may not appear successively in the sequence. 
Thus the sequence of locations given above might be represented as RB RB M .. -. In this 
representation, juxtaposition denotes the results of successive observations. If the definition 
of observation permits the marmot to be in the same location on successive observations, 
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then a sequence of locations such as R RR BM MS is possible. Here it might be suggestive 
to \Vnte the result of the seven observations as 

R ➔ R ➔ R ➔ B ➔ M ➔ M ➔ S 

When represented using juxtaposition or a diagram as above, a sequence of observations is 
frequently referred to as a sample path. 

In this example, we identify a "state of the system" \Vlth a location of the marmot. 
From a biological perspective, the marmot rnay be sleeping or resting while in the rock 
pile, feeding while in the meadow, and simply in transit while in the brush. In a ~?re 
complex situation where we have several marmots, we need a more elaborate defimt1on 
of the state of the system. We must decide, for instance, whether we are going to keep 
track of individual marmots. If we decide.to do so,· then the state corresponding to marmot 
number 1 being in the racks and marmot number 2 being in the brush is different from the 
state corresponding to mannot number 1 being in the brush and marmot number 2 being in 
the rocks. If we simply keep track of how many marmots are in the various locations, then 
these two situations correspond to the same state. 

If observations are made periodically in time, then the marmot can be in any two 
locations on successive observations. If the time between successive observations is short 
compared with the time it takes the marmot to move through a location, then it is possible for 
the marmot to be observed either in the same location or in adjacent locations on successive 
observations. Sometimes the experiment is set up so that the marmot is observed each time 
it moves from one location to another. In such cases, two successive observations must have 
the marmot in different but adjacent locations. For each assumption about how observations 
are made, we have a diagram similar to that shown in Figure 3.2. In Figure 3.2a the arrows 
represent possible moves of the marmot under the as"sumption that the marmot is observed 
only when it moves from one area to another, and in Figure 3.2b the arrows represent 
possible moves when it is observed whenever it moves and at regularly spaced times­
and can therefore be in the same area on successive observations. Figure 3.2 provides two 
examples of a transition diagram. It illustrates possible transitions between states of 'our 
process. Later we will add probabilities of the transitions to the diagram. 

There are natural assumptions one can make about the movements of the marmot. The 
likelihood of the marmot moving from the brush to the rock may depend on several of the 
preceding moves, or it may depend only on the immediately preceding move, or it may 
be independent of preceding moves. Each of these assumptions leads to a mathematical 
model whose· predictions can be compared with observations. Here, we consider in detail 
only one such assumption: \Ve assume that the likelihoods of the various possible moves 
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Figure 3.2 
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for the marmot depend only on the location of the marm6t, not on how much time has 
elapsed since we began the observ3.tions and not on the previous moves of the marmot. It is 
this assumption (which we will make formal soon) that distinguishes Markov chains from 
other stochastic processes. In circumstances where the Markov assumption is appropriate, 
it is customary to arrange the likelihoods or probabilities of moves in a table or matrix. We 
illustrate this idea with two examples. 

EXAMPLE 3.1 Assume that the marmot is observed only when it moves from one sub­
area to another and that it is equally likely to make any ril.ove available to it. Then the 
probabilities of various moves are as shown in Table 3.1. II 

Table 3.1 

Location-after Move 

R B M s 
R 0 I I I 

3 3 3 
Location B I 0 I 0 
before 2 2 

M I I 0 I 
Move 3 3 3 

s I 0 I 0 2 2 

EXA.l\1PLE 3.2 For this example, assume that th~ marmot is observed periodically and 
whenever it moves from one subarea to another. Assume that it is twice as likely to re­
main where it is as to move, and if it moves, then it is equally likely to make any move 
available to it. Under these assumptions, the probabilities of various moves are as shown in 
T~ble 3.2. Ill 

Table 3.2 

Location after Move 

R B M s 
R 2 I I j 

3 9 9 9 
Location B I 2 I 0 6 3 6 before 

M I I 2 I 
Move 9 9 3 9 

s I 0 I 2 
6 6 3 

The tasks of verifying the entries in these tables and finding corresponding tables in 
other situations are topics of the exercises. 

Table 3.2 lists the probabilities for single transitions by the marmot. In that table, a 
transition occurs whenever a fixed period of time has elapsed or the marmot has changed 
areas, whichever event occurs first. We are often interested in the results of multiple transi­
tions, and we need the probabilities of each possible result. One method of computing these 
probabilities is by using a simple tree diagram. For example, suppose that the marmot is in 
the brush at a certain time, and we want to know how likely it is to be in each of .the areas 
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Figure 3.3 

R, B, M, S after tvvo transitions. The tree diagram in Figure 3.3 illustrates the computations 
needed to compute these four probabilities. We see that 

Probability[B ---+ R in two transitions] = ( -6
1

) (~3) + (~3) (-6
1

) + (-6
1

) (-9
1

) 

Probability[B -+ B in two transitions l = ( D G) + ( D G) + G) G) 
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In this example it is relatively straightforward to determine the two-step transition 
probabilities using tree diagrams similar to Figure 3.3. In cases with more states or more 
steps, this method becomes unwieldy and we need an alternative. 

Ill The Effects of Group Structure on Small-Group Decision Making 

In many group decision-making situations, we believe that in addition to the merits of the 
alternatives being considered, there are aspects of the dynamics ·of the group that influence 
the outcome. For instance, once a group of six people reaches a division of five to one in favor 
of some alternative, the mere fact of this division exerts some influence on the dissenting 

• member. In this example we describe a model designed to test this conjecture in a setting 
in experimental psychology. 
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To isolate the possible infl.uenc~ of the group structure on decision making, we introduce 
an experiment designed to minimize other influences. In particular, care must be taken to 
ensure that the alternatives appear equally attractive and th<J.t no individual in the group 
assumes a leadership position. Suppose a grouP of people performs a sequence of trials. 
Each trial consists of the presentation of a stimulus-a set of alternatives-to be evaluated 
and a discussion of the merits of the alternatives. The discussion continues until consensus 
is reached. Suppose that a stimulus consists of a set of three geometrical designs that are 
to be evaluated according to some criteria. Each member of the group is able to convey 
a preference to the investigator without other members of the group knowing what that 
preference is, and preferences can be changed at will. The subjects are asked to express 
a preference as soon as the stimulus is shown to the group and then to begin discussions 
seeking to reach consensus. Each subject is to convey a preference change to the group 
right after it is conveyed to the investigator. After consensus is reached, the group is told 
which of the designs is "best" in tenns of the criteria. The group is led· to believe that 
there is a system behind the assignment of values to the designs in the set, but actually the 
designs in each set are ranked randomly. Consequently, as far as the group is concerned, 
each design is equally preferable. Also, techniques of selective reinforcement can be used 
to discourage the emergence of a group leader. For instance, selection of the best design can 
be manipulated so that each member of the group appears to have about the same percentage 
of "correct" initial selections. 

Preference selections are monitored and recorded. The process continues either for a 
certain period of time or for a certain number of trials. In practice, it might be desirable to 
discard the first few trials because the subjects are be-;:oming familiar with the experimental 
procedure during that period. 

To make the discussion more specific, suppo_se that there are four individuals and 
that each stimulus consists of three designs. Each individual can select any of the three 
alternatives as the best, and consequently, there are 34 = 81 possible distributions of pref­
erences for the group. However, the experiment has been designed so that the alternatives 
appear equally attractive, and we ought not to distinguish among them. For example, if 
the alternatives are X, Y, and Z, and if the choices of the members are X, Y, Y, Y in one 
case and Y, X, X, X in another, then these choices should be viewed as equivalent from 
the standpoint of the structure of the group. Both represent a group structure in which three 
people vote for one alternative and a single individual votes for another, Also, there is no 
reason to distinguish among members of the group. That is, three votes for alternative X 
and one vote for Y should be considered the same regardless of which member votes for 
alternative Y. 

It follows that the important information is the number of individuals _who voted for 
the most popular alternative, the number who voted for the second most popul;rr alternative, 
and the number who voted for the least popular alternative. That is, the relevant information 
is contained in a triple of integers (x, y, z), where x is the number of individuals voting for 
the most popular alternative, y is the number voting for the second most popular alternative, 
z is the number voting for the least popular alternative, and x + y + z = 4. The possible 
triples are (4, 0, 0), (3, 1, 0), (2, 2, 0), and (2, 1, 1). We refer to these triples as group 
compositions and we write them simply as xyz; thus 310 is the same as (3, 1, 0). 

Suppose that the group compositions are monitored continuously and every preference 
change is recorded. A change in group composition occurs whenever any subject changes 
a vote. Each preference change is equivalent to a change from one group composition to 
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Figure 3.4 

Table 3.3 

Composition after One Shift 

400 310 220 211 

310 l l 3 3 

Composition s 8 8 8 

before 220 0 1 0 1 
2 2 

Shift 211 0 l 1 l 
4 4 2 

another, possibly the same one. We assume that only one vote changes at a time. In the 
rare event that two people simultaneously indicate a change of vote, we arbitrarily select 
one to be changed first. It follows that preference changes by individuals are equivalent to 
shifts between group compositions that can be effected by the change of a single vote. For 
example, 211 ➔ 220 is an admissible transition, but 211 ➔ 400 is not. The po~sible shifts 
are shown by arrows in Figure 3.4. 

Note that it is possible for a single vote to change and for a group with composition 211 
to change to a group with the same composition. Likewise for a group with composition 
310. Because a trial of the experiment ends when consensus is reached, there are no possible 
shifts from group composition 400. 

The probabilities of various shifts can be conveniently summarized in a table. The 
entries in the table will depend, of course, on the assumptions about the voting behavior of 
the subjects. For example, jf each subject is equally likely to change her or his vote and is 
equally likely to change to each of the other alternatives, then we have the information in 
Table 3.3. The task of verifying the entries in Table 3.3 is the topic of Exercise 5. 

As a final comment in this section, we recall that an important part of a mathemati­
cal model is the assumptions. Our discussion of small-group decision malcing provided an 
example of one possible set of assumptions that can be made in that situation-of course, 
there are many alternatives. It is difficult (and frequently impossible) to directly test the 
validity of the assumptions. Instead, it is customary to compare the predictions based on the 
assumptions with observations. If the observations are consistent with the predictions, then 
one has reason to continue the study. If the observations are not consistent with the pre­
dictions, then the assumptions need to be reviewed and modified. In the following sections 
of this chapter, we develop a theory and techniques to make predictions, and in Chapter 4 
we will develop techniques for making predictions based on simulation models. Making 
predictions based on assumptions and then comparing the predictions with observations are 
part of the cycle of model building described in Chapter 1. 
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Figure 3.5 

Ill Exercises 3.1 

l. In the model of a marmot's range described in this section, verify the entries in Table 3.1 
under the assumptions given in Example 3.1. 

2. In the model of a marmot's range described in this section, verify the entries in Table 3.2 
under the assumptions given in Example 3.2. 

3. A deer has as its range the area diagrammed in Figure 3.5, and its movements are 
observed and recorded as follows: The location of the deer is noted every hour and 
every time it moves from one area of its range -to another. For this purpose, the woods 
and the field to the east of the road are distinguished from the woods and the :field to 
the west of the road. If the deer crosses the road, then it moves only from field to field; 
that is, it does not move to or from the woods when crossing the road. Suppose that the 
pr?babi~ties of moves depend only on its current location and not on what happened 
pnor to 1ts last move. 

Assume that the deer is twice as likely to remain where it is as to move and that 
every move that does not require it to cross the road is equally likely. Also, jf it moves, 
each option that does not require it to cross the road is three times as likely-to be selected 
as an option that involves crossing the road. Create a table similar to' Table 3.1 for this 
situation. 

4. A marmot lives in the region diagrammed in Figure 3.6. Suppose the· marmot is ob­
served every hour and each time it moves from one area to another. Suppose that the 
probabilities of moves depend only on its current location, and not on what happened 
prior to its last move. Also suppose it is equally likely to move and to remain where 
it is. If it moves, the probability of its moving to an adjoining area. is proportional to 
the number of resources available to it in that area in comparison to the resources in 
all adjoining areas. The areas bordering the pond have water in addition to the other 
resources specified. Create a table similar to Table 3.1 for this situation. 

5. Consider the small-group decision-making situation described in this section in which 
three alternatives are presented to four individuals. If each subject is equally likely to 
change her or his vote, and is equally likely to change to each of the Other alternatives, 
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Figure 3.6 
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show that the probabilities of shifts between group compositions are as shown in 
Table 3.3. 

6. Consider the small-group decision-making situation described in this section in which 
three alternatives are presented to four individuals. If from a specific group composition 
each possible shift to another group composition, possibly the same one, is equall_Y 
likely, create a table similar to Table 3.3 for this case. How does the table change if 
only shifts to different group compositions are possible? 

7. Consider a small-group decision-making situation similar to that described in this sec­
tion with four alternatives presented to five individuals. \Vb.at are the group compositions 
in this case? If each subject is equally likely to change her or his vote, and is equally 
likely to change to each of the other alternatives, find the probabilities of shifts between 
group compositions in this case and create a table similar to Table 3.3. 

8. In the small-group decision-making experiment described in this section, define a shift 
toward consensus as one of the following: 211 ➔ 310,220 ➔ 310,310 ➔ 400. Assume 
that a voter who can make a shift toward consensus is twice as likely to make a vote 
change as any other voter, and that if such a voter changes her or his vote, all changes 
are equally likely. Also, assume thJ.t all other voters are equally likely to change their 
votes and that all choices are equally likely. Create a fable similar to Table 3.3 for this 

situation. 
9. In the s~all-group decision-making experiment described in this section, define a shift 

toward consensus as one of the following: 211 ➔ 310,220 ➔ 310, 310➔ 400. Assume 
that a voter who can make a shift toward consensus is twice as likely to make a vote 
change as any other voter, and that if such a voter changes her or his vote, the change 
is twice as likely to be toward consensus as otherwise. Suppose that all other voters 
are equally likely to change their votes and that all vote changes are equally likely for 
these voters. Create a table similar to Table 3.3 for this situation. 

10. Consider a small-group decision-making situation similar to the one described in this 
section, but with six individuals and three alternatives. Formulate a model similar to the 
one of this section underthe following assumption: An individual who is the only person 
voting for an alternative is ~ee times as likely to change her vote as an individual who 
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is one of two or more voting for an alternative. If an indiVidual changes her vote, she is 
equally likely to change to any'other alternative. Create a table similar to Table 3.3 for 
this case. 

3.2 Basic Properties of Markov Chains 
With the examples and discussion of Section 3.1 as a guide, we turn to a discussion of two 
more general settings that include the examples of Section 3.1. We consider a system that 
can be in any of N possible states, and we observe the system at n successive times. The 
concepts of state and being in a state or occupying a state are taken as undefined terms. 
When we construct logical models of systems in specific circumstances, we must assign 
meanings to these terms, but in this general discussion they are left undefined. We usually 
refer to the states simply by the integers 1, 2, ... , N. 

By the very nature of a Markov chain, it is likely that for most observations, the 
specific state occupied by the system cannot be determined in advance, and one knows only 
the probabilities that it will be in the various states. Consequently, the status of a system is 
usually given as a state vector. 

Definition 3.1 A state vector x for a Markov chain with N states is an N-vector x = 
[x1 x 2 XN ], where xi is the probability that the system is in state i, i = 1, 2, ... , N. 
The state vector on the mth observation will be denoted by x(m ). 

As an example, to say that the state of a four-state Markov chain is specified by the state 
vector [O .25 .5 .25] means that the system is not in state 1, is in state 2 with probability 
.25, is in state 3 with probability .5, and is in state 4 with probability .25. If the system 
is _!mown to be in a specific state, say state j, then the state vector has the jth coordinate 
equal to 1 and the remaining coordinates equal to zero. For instance, if a four-state Markov 
chain is known to be in state 2, then the state vector is LO 1 0 0]. In a Markov chain 
with N states, if the system is equally likely to be in any state, then the state vector has all 
coordinates equal to 1 / N. 

If the system is in state i on the kth observation and in state j on the (k + l)th obser­
vation, then we say that the system has made a transition from state i to state j at the kth 
trial, step, or stage of the process. We also say that the system has made·a move from state 
i to state j. 

It will be useful to work with another example, one that is somewhat simpler than those 
introduced in Section 3 .1. 

We use a setting that is familiar as a version of the classic maze of experimental 
psychology. The study of the behavior of mice (and rats) in mazes has been-and continues 
to be-important in generating and verifying hypotheses that lead to useful models for 
animal behavior. 

EXAlVIPLE 3.3 Suppose that a mouse is released in the maze shown in Figure 3. 7 and its 
behavior is observed. The illumination level in each compartment of the maze is maintained 
as shown in the figure. The system to be studied consists of the mouse and the maze, and 
we assume that the mouse is always in exactly one compartment and that it is possible to 
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determine that compartment. The system is said to be in state i if the mouse is in compartment 
i, i = l, 2, 3, 4. Observations are to be made, and the state of the system recorded every 
2 minutes and each time the mouse moves from one compartment to another, necessarily 
an adjacent one. To illustrate the possible transitions, suppose that on one observation the 
mouse is in compartment 2. On the next observation it may be in compartment 1, 2, or 3; it 
cannot be in compartment 4 according to our definition of observation. Iii 

In the situation of Example 3.3, we assume, as we would expect, that the mouse moves 
in unpredictable ways, and we describe its movements in probabilistic terms. Suppose 
that the mouse is iri state i on observation k, and we wish to determine the probability 
that it is in state j on observation k + 1. In general, we might e:X.pect this probability to 
depend on the states i and j, the observation k, and the history of the movements of the 
mouse prior to its arrival in state i on the kth observation. There are, of course, many 
ways in which the transition could depend on the history of the process. For instance, we 
could assume that the mouse has complete recall of past movements and that its trans_ition 
probabilities at the ktb step depend on the total prior history of its movements. Although in 
some circumstances such an assumption may be appropriate, in many cases it leads to very 
complex models without yielding any improvements iri predictions. A simpler assumption 
would be that the transition probabilities depend only on the most recent past, say the 
last 1, 2, or 3 moves. We investigate here the situation wherein transition probabilities 
depend only on the current state, not on the prior history of the process. This includes the 
assumption that they do not depend on k-the number of steps for which the process has 

been observed. 
We summarize this discussion by giving the key assumption that distinguishes Markov 

chains from more general stochastic processes. 

II The Markov Assumption 
A Markov chain is a stochastic process with a finite number of states and with the property 
that if it is in state i on one observation, then the probability that it will be in state j on the 
next observation depends on states i and j (which may be the same state) and not on the 
observation number or on the history of the process prior to the current observation. 

It will be useful to introduce the following notation and terminology. 

Definition 3.2 Let Pij denote the conditional probability that if the system is in state i on 
one observation, then it will be in state j on the next observation, 1 :S i :S N, l :S j :S N. 
These probabilities are called transition probabilities, or, more precisely, one-step tran­
sition probabilities. For each Markov chain, the N x N matrix P whose ij-entry is Pij is 
called the transition matrix for the Markov chain. 
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We have 

Pn P12 p13 P1N 

P21 P22 P23 P2N 
P= 

PNI PN2 PN3 PNN 

as the transition matrix for a Markov chain whose transition probabilities are PiJ, 
1 :Si :SN, 1 :'S j :SN. 

Remark It is important to note that because of the Markov assumption, PiJ is the proba­
bility that if the system is in state i on observation k then it will be in state j on observation 
k + 1, independent of k. Therefore, if one knows that (with states and observations speci­
fied) the transition probabilities do depend on the observation numbers, then the stochastic 
process is not a Markov chain according to our definition. 

It follows from the definition of transition probability that the probability Pu of making 
a transition from state i to state j at the kth step is the same as the probability of the system 
being in state j on the second observation given that it was in state i on the first observation. 
It is sometimes appropriate to maintain the assumption that the transition probabilities are 
independent of the history of the process but to permit them to depend on the time-that is, 
on how long the process has been observed. In this case we have a more general stochastic 
process usually called a nonhomogeneous Markov. ·chain. We will not pursue this more 
general situation here. -

Each entry in the ith row of the transition i;natrix is a probability, and if the sys­
tem is in state i on one observation, then it must be in some state j, 1 :S j _::: N, on 
the next observation. Consequently, for each i we have ~/=l Pu = l, and the vectors 

Pi = [pn Pi2 PiN], i = l, 2, ... , N, are probability vectors. Each row of the 
transition matrix is a probability vector. 

The transition matrix P has entries that are the probabilities of making transitions from 
one specified state to another in one step. There are corresponding matrices for multi.step 
transition probabilities. 

Definition 3.3 Let P(m) = [pij(m)] be the matrix for which the ij-entry is the proba­
bility of making a transition from state i to state j in m steps, 1 _::: i .:':: N, 1 ::: j :5 N, 
m = 2, 3, .... Clearly, P(l) = P. 

Remark Note that we use the terms step and move in the same Way as W-_e use the term 
transition. It is common to talk about the probability of a transition from state i to state j 
in m steps, m moves, or m transitions. 

EXAMPLE 3.4 Consider the situation described above in which a mouse moves in a 
maze with compartments illuminated at different levels, and formulate a Markov chain 
model under the following assumption: The mouse remains in the same compartment with 
probability .5, and the rest of the time it is equally likely to make any of the moves open 
to it. 
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We define the states as follows: The system is in state i if the mouse is in compartment i, 
i = 1, 2, 3, 4. Because the mouse remains in the same compartment half the time, P1 1 = .5, 
p

22 
= .5, p

33 
= .5, and p44 = .5. Next, if the mouse is in state 1 on.one observation, then 

on the next observation it can be only in state 1 or 2. Consequently, using the assumption, 
we have-p

12 
= .5. Likewise, p43 = .5. Also, if the mouse is in state 2 on one observation, 

then on the next observation it can be in state 1, 2, or 3. Consequently, because it is in state 2 
with probability .5, it is in state 1 or 3 with probability .5, and because it is equally likely 
to be in either, we have p 21 = .25 and p 23 = .25. Similarly, p32 = .25, and p34 = .25. 
Finally, by the way observations are defined, p 13, P1 4 , p24, p31, p41, and p42 all equal 0. 
Consequently, the transition matrix for this Markov chain is 

' [Pll 
P12 PD 

P141 l .5 
.5 0 

I] P= P21 P22 P23 p24
. = .25 

.5 .25 

P31 p32 p33 p34 0 .25 .5 

p41 p42 p43 p44 0 0 .5 .5 

It is clear that the entries in the tables constructed in Section 3.1 are transition proba­
bilities, and we will represent them in this way in the future. 

lllll State Vectors 

A state vector is a probability vector that describes the status of a Markov chain at an 
observation, and the state vectors at two successive observations are related in a simple 
way. Indeed, if x(m) and x(m + 1) denote the state vectors at the mth and (m + l)st 
observatio:ns, respectively, then x(m + 1) = x(m)P. To verify this relationship, suppose 
that the state vector at a specific observation is x = [x1 x2 XN]. (Here we suppress 
the dependence on the observation number m for notational convenience.) Then, using the 
definition of p jt for j = l, 2, ... , N, we can conclude that the probability it is in state 1 

on the next obseryation is 

Y1 = X1P11 +x2p21 + · · · +xNPN1 

Thus y
1 

is the dot product of x and the first column of P. Likewise, this time using the 
definition of p 

12 
for j = 1, 2, . . , N, we can conclude that the probability it is in state 2 

on the next observation is 

Y2 = X1P12 +xzp22 + · · · +xNPN2 

Continuing in this fashion, we find that the probability that it is in state N .on the next 

observation is 

YN = X1P1N + X2P2N +' '+ XNPNN 

That is, if the state vector at one observation is x = [x1 X2 

at the next observation is 

YNl = xP 

Thus, with x(m) and x(m + 1) as defined above, we have 

(3.1) x(m + l) = x(m)P 

1-iWi!n-:itt!t¾S'i!-¥§ 

XN ], then the state vector 

' -, 
-l 
i 
I 
I 
j 
i 

'! 
I 
' 
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1111 Multistep Transitions and the Sequence of State Vectors 

If the initial state vector is x, then the state vector at the next observation is xP, the state 
vector at the second observation is (xP)P = xPP = xP2, and so on. That is, the sequence 
of state vectors is 

X, xP, xP\ .. , xP',. 

A Markov chain is determined by the set of states, the transition matrix, and the initial 
state vector for the system. It is frequently useful to represent the information on the set of 
states and the transition probabilities in a transition diagram. The most common form of 
a transition diagram has the states represented by symbols (generally numbers or letters in 
small circles), an arrow directed from state i to state j if Pii > 0, and a number near the 
arrow with the value of Pij. The transition diagram for the model described in Example 3.3 
is shown in Figure 3.8 . 

General stochastic processes can be studied using tree diagrams, and in particular, 
Markov chains can be studied in that way. There is, of course, a close connection between the 
information usually included on tree diagrams and the information included in a transition 
matrix. Given the initial state of the system, either tree diagrams or multi.step transition 
matrices can be used to determine how the process evolves over time. Also, using a one­
step transition matrix, it is always possible to determine the multistep matrix by using a tree 
diagram, and we illustrate this in the next example. 

.5 .5 .5 B 

~~a~n 
~ 

.25 .25 ,5 

Figure 3.8 

EXAMPLE 3.5 Consider the situation described in Example 3.4 and determine the 
2-step transition matrix-that is, the matrix of two-step transition probabilities-by using 
tree diagrams. 

Because the first row of the two-step transition matrix consists of the probabilities of 
making transitions from state 1 to states 1, 2, 3, 4 in two steps, we begin.by constructing the 
tree diagram when the process begins in state l. That tree diagram is shown in Figure 3.9(a). 
Using the information on the tree diagram, we find that 

p11(2) = .375, pn(2) = .5, p13(2) = .125, p,,(2) = 0 

To determine the entries in the second row of the two-step matrix, we us;. a tree diagram 
for. which the process begins in state 2, as sho\Vll in Figure 3.9(b). Using the information 
on the tree diagram, we find that 

P21(2) = .25, p22(2) = .4375. P23(2) = .25, P24(2) = .0625 

Similar arguments lead to the third and fourth rows of the two-step transition matrix. They 
are 

p31 (2) = .0625, 

p41 (2) = o. 
p32(2) = .25, 

p<Z(2) = .125, 

p33 (2) = .4375' 

p.,(2) = .5, 

p34(2) = .25 

p44(2) = .375 
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.5 

.5 

.5 
.25 

25 

.s .25 .25 

. 125 
.25 

.5 

.25 
'5 

.'5 .25 
3 .125 

.25 

(a) (b) 

Figure 3.9 

It follows that the two-step transition matrix P(2) is 

1

.3750 

.2500 
P(2) = .0~25 

.5000 

.4375 

.2500 

.1250 

.1250 

.2500 

.4375 

.5000 

0~25. 

.2500 

.3750 

.125 

2 .i25 

.125 

2 .25 

3 .125 

2 .0625 

.125 

4 .0625 

The technique illustrated in Example 3.5 is a very general one, and it can be t;tsed, in 
particular, to construct them-step trarlsition matrix for any integer m. However, it is clear 
that for Markov chains with a large number of states or a large number of steps m, the effort 
involved in using this method can be prohibitive. Indeed, one of the great benefits of using 
Markov chains in mathematical models is that there is a much simpler way to determine 
multistep transition matrices once you know the one-step transition matrix. 

THEOREM 3.1 Let P = [p;j] be the transition ;matrix of a Markov chain. Then the 
ij-entry of the m-step transition matrix P(m) is the ij-entry of pm, the mth power of the 
one-step transition matrix. 

Proof The proof is a direct consequence of the definition of conditional probability and 
the Markov assumption, and it illustrates a useful approach to computing multi.step transition 
probabilities. Indeed, the ij-entry of P(m) is the conditional probability that the system is 
in state j given th3.t it began ·in state i and made m transitions. Consider each of them-step 
sample paths from state i to stat_~ j as consisting of a path of length m - 1 followed by 
a single step. Then, after m - l steps the system must be in some state, say state k. The 
conditional probab_ility that it is in state k given that it began in state i and made m - l 
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transitions is the ik-entry of the (11J - 1)-step transition matnx, P(m - 1). Therefore, the 
probability that the system is in state k after m - I steps and in state j after m steps is equal 
to Pik(m - 1) PkJ · Finally, using the factthat each sample path is in some state k after m - 1 
transitions, we have 

N 

Pr;(m) = LPik(m - l)PkJ 
k=l 

This shows that P(m) = P(m ·- l)P. Applying the same reasoning to P(m - 1), we 
find that P(m - 1) = P(m - 2)P, and consequently P(m) = P(m - 2)PP = P(m - 2)P 2 . 

Continuing the argument, we find that 

P(m) = P(m - l)P = P(m - 2)P2 = P(m - 3)P3 = ... = P(l)Pcm-ll 

ButP(l) = P, andconsequentlyP(m) = pm. .. 
EXAMPLE 3.6 Consider the situation described in Example 3.4, and compute the two­
step transition matrix P(2) using Theorem 3.1. 

In Example 3.4 we determined the transition matrix for the Markov chain to be 

1

.5 

r 
.5 

.5 

.25 

0 

0 

.2j 

.5 

.5 

Using Theorem 3.1, we find that the two-step transition matrix P(2) is 

1

.5 .5 0 

0 • [ .5 

.5 0 

I] r .5 .25 0 .25 .5 .25 
P(2) = 

.25 .5 .25 0 .25 .5 

0 .5 .5 0 0 .5 .5 

1

.3750 .5000 .1250 

.0~25 I .2500 .4375 .2500 

.0625 .2500 .4375 .2500 

0 .1250 .5000 .3750 

which is the same result we obtained in Example 3.5, as it must be. ill 

EXAMPLE 3.7 Consider the process of group decision making describe~ in Section 3.1. 
In particular, suppose we have three alternatives and a group of four individuals. We form a 
Markov chain model under the asswnption that each individual is equally likely to change 
her or his vote and is equally likely to change to each of the other alternatives. 

Table 3.3 contains the probabilities for shifts from the group compositions 310, 220, 
and 211 to the group compositions 400,310,220, and 211. To make use of the Markov 
chain concept, we need to include the group composition 400 as a state. The situation was 
originally described as an experiment that ended as soon as consensus was reached-that is, 
as soon as the group reached composition 400. However, for the purpose of our Markov chain 
concept, it is useful to view 400 just as we view any other state, but "With the characteristic 
that the system never leaves that state. This can be accomplished by setting the transition 
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probability from the state corresponding to group composition 400 to itself equal to 1, and 
the probability of making a transition from state 400 to any other state equal to 0. 

For this example, we define the states of the system as the group compositions, and 
we define state 1 as group composition 400, and states 2, 3, and 4 as group compositions 
310, 220, and 211, respectively. Then, with the understanding that once the system reaches 
group composition 400 it does not leave it, we have the transition matrix 

[i 
0 0 

l] 
I 3 

P= 
8 8 
I 
2 0 
l l 
4 ' 2 

Suppose the group is initially in state 4; that is, the group composition is 211. How 
many vote changes are required before the probability of the group reaching consensus first 
reaches .5? We answer this question by computing successive powers pm of the transition 
matrix P and asking for the smallest integer m for which p 41 (m) 2: .5. We have p4 1 (k) < .5 

for 1 ::C:: k :::: 19 and 

1

1 0 0 

• 2~50. .5536 .1265 .1049 
P( 20) = .5064 .1399 .1160 .2377 

.4941 .1433 .1189 .2436 

I 
1 0 0 

.2i74i .5694 .1220 .1012 
P(21) = 

.1349 .1119 .2293 .5239 

.5121 .1383 .1147 .2350 

from which we see that after 20 vote changes, the probability p 41 (20) = .494, and after 
21 vote changes, p41(21) = .512. Thus 21 vote changes are required for the probability 
of the group reaching consensus to exceed .5. Recall that the system remains in state 1 
once it arrives there. Consequently, the sequence of entries in the ( 4, 1) spot in the matrices 
P (m) is a monotone nondecreasing sequence, and once an entry is greater than .5, all 
subsequent entries are also greater than .5. Of course, this answer depends heavily on the 
initial assumptions of the model. A different set of assumptions about the likelihood of vote 
changes would give a different matrix P and a different answer. llli'il 

11\1 Exercises 3.2 

In these exercises, forming a Markov chain model requires that you identify the states and 
find the transition matrix. 

1. Suppose that.a mouse moves in the maze shown in Figure 3.7 and that observations are 
made every 5 minutes and every time the mouse changes compartments. Formulate a 
Markov chain model under.the following assumptions: The mouse remains in the same 
compartment 40% of the time:, and if it has a choice when it moves, it moves to a darker 
compartment twice as often as to a lighter one. 
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A 

Figure 3.10 

2. In the model formulated in Exercise 1, suppose the mouse is initially in the hio-hly 
illuminated compartment. 

0 

(a) Find the probability that it does not leave the highly illuminated compartment in 
the first five transitions. 

(b) Find the probability that it is in the same compartment after five observations. 
(c) Find the probability that it is not in the highly i11uminated compartment on exactly 

one of the next five observations . 

3. Suppose that a mouse moves in the maze shown in Figure 3.7 and that observations are 
made every time the mouse changes compartments. Formulate a Markov chain model 
under the following assumption: Whenever the mouse has a choice, it moves to a darker 
compartment three times as often as to a lighter one. 

4. S~~pose ~at we have the situation consid:red ill Example 3.7. If the group is initially 
divided 2-0, how many vote changes are necessary before the probability of consensus 
first exceeds ¾? • 

5. In the group decision-making situation described in Section 3.1, define a shift toward 
consensus as one of the following: 211 ➔ 310,220 ➔ 3.10, 310 ➔ 400. Assume that a 
voter who can make a shift toward consensus is twice as likely to make a vote change as 
3:11y other voter, and that if such a voter changes her or his vote, ail changes are equally 
likely. Also, assume that all other voters are equally likely to change their votes and 
that all choices are equally likely. ~ 

(a) Form a Markov chain model for this situation and find the transition matrix. 
(b) If the group is initially distributed 220, what is the most likely group composition 

after five vote changes? After ten vote changes? 

6. An inebriated bicyclist cycles through the neighborhood shown in Figure 3.10. He 
begins at location A, and he traverses the streets at random. During each time interval 
he either rests at an intersection or pedals exactly one block. 

Suppose that at each intersection the bicyclist is three times as likely to pedal as 
to rest. If he pedals, he is equally likely to take any street open to him. Form a Markov 
chain model for this situation. 

7. ~ the se:ting de.scribed in ~xercise 6, suppose that the bicyclist never rests, that at any 
mtersectrnn he 1s equally likely to take any street available to him, and that" once he 
reaches location B he stays there. Form a Markov chain model using these assumptions. 

8. Consider a small-group decision-making situation similar to that described in Sec­
tion 3.1 but with five individuals and three alternatives. Formulate a Markov chain 
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model under the following assumption: An individual 'Who is the only person voting 
for an alternative is twice as likely to change her vote as a person who is one of a group 
of two or more voting for an alternative. If an individual changes her vote, then the 
probability of her changing to a particular alternative is proportional to the number of 
individuals voting for that alternative. 

If the group initially has four individuals voting for the most popular alternative, 
find the probability that consensus is reached after at most three vote changes. 

9. A Bloomington resident commutes to work in Indianapolis, and he encounters several 
traffic lights on the way to work each day. Over a period of time, the following pattern 
has emerged: 

Each day the first light is green. 
If a light is green, then the next one is always red. 
If he encounters a green light and then a red one, then 'the next will be green with 
probability .6 and red with probability .4. 
If he encounters two red lights in a row, then the next will be green with probability 
p and red with probability 1 - p. 

Formulate a Markov chain model for this situation. 

10. Consider a small-group decision-maJring situation similar to that described in Sec­
tion 3.1 with five individuals and four alternatives. What are the group compositions in 
this case? Form a Markov chain model under the following assumption: Each subject 
is equally likely to change her or his vote and is equally likely to change to each of the 
other alternatives. 

If the group initially has four individuals voting for the most popular alternative, 
find the probability that the same holds after four vote changes. 

11. A marmot lives in the region shown in Figure 3 .11. Suppose that the marmot is observed 
every hour and each time it moves from one area to another. Formulate a Markov chain 
model under the following assumptions: The marmot is hatice as likely to move as to 
remain where it is, and if it moves, the probability of its moving to a particular area 
is proportional to the number of resources available to it in that area in comparison to 
the number of resources available to it in the adjoining areas. The areas bordering the 
pond have water in addition to the resources specified. 

If the marmot begins in the rock pile, find the probability it is in the south meadow 
on the fifth observation. 

Figure 3.11 
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12. In the situation described in E;xercise 11: 

(a) Suppose the marmot is initially in the north meadow, and find the probability 
that it is in the rocks after 10 transitions. Find the same probability after 20 and 
40 transitions. 

(b) Suppose the marmot is initially in the brush, and determine the same probabilities 
aS in part (a). 

13. There are two coins, one fair and one biased with Pr[HJ = .3. A game is played by 
successively flipping the coins· as follows: 

• The game begins with a flip of the fair coin, and the result, H or T, is noted. 
If the result of a flip is H, then the other coin is used on the next flip, and the result 
is noted. 
If the result of a flip is T ,, then the same coin is used on the next flip, and the result 
is noted. 

(a) Formulate a Markov chain model for this situation. 
(b) Find the probability that the fourth flip is a head. 

14. There are six balls, two red and four green, distributed between boxes labeled 1 and 2, 
three balls in each box. vVhen the game begins, there are two green balls and one red 
ball in box l. The game is played as follows: A ball is selected at random from each 
box. The ball selected from box l is placed in box 2, the ball selected from box 2 is 
placed in box 1, and the colors of the balls in each box are noted. Then two more balls 
are selected, and play continues. 

(a) Formulate a Markov chain model for this situation. \Vb.at are your states? 
(b) Find the probability that there are exactly two red balls in box 1 after three plays 

of the game. 

15. Joe and Jess play a game as follows: An unfair coin withPr[H] = .6 is flipped, and the 
result is noted. If it comes up heads, then Jess pays Joe one dollar, and if it comes up 
tails, then Joe pays Jess ·one dollar. If each player has money, then the coin is flipped 
again. The game ends as soon as one player has all the money. 'When the game begins, 
Joe has one dollar and Jess has three dollars. 

(a) Formulate a Markov chain model for this game. 
(b) Fi~d the probability that Jess has all the money after not more than four flips of the 

com. 

16. An experiment consists of flipping an unfair coin with Pr[HJ = .6 repeatedly, noting 
the result of each flip, until there are three consecutive heads. At that point the experi­
ment ends. 

(a) Formulate a Markov chain model for this experiment. 
(b) Find the probability that the experiment ends after exactly six flips of the coin. 

3.3 Classification of Markov Chains and the 
Long-Range Behavior of Regular Markov Chains 

Markov chains, as examp1es of stochastic processes, can be used to yield information on 
the probabilities of events, events described in terms of states or sets of states. A key tool in 
studying Markov chains is the multistep transition matrix. In Section 3.2 we showed that for 
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every Markov chain, the m-step transition matrix is the m th power of the one-step transition 
matrix. Beyond this common behavior, Markov chains are quite diverse. The goal of this 
section is to illustrate some of this diversity, to provide a useful way to classify Markov 
chains, and to study some selected classes in detail. 

EXA~IPLE 3.8 Consider two Markov chains with state space {l, 2, 3}; the first has tran­
sition matrix P and the second has transition matrix T. 

The transition diagrams for these Markov chains are shown in Figure 3.12: Fig­
ure 3.12(a) shows the transition diagram for the Markbv chain with transition matrix P, 
and Figure· 3.12(b) shows the transition diagram for the Markov chain with transition 
matrix T. 

First we study the Markov chain with transition matrix P. If the system begins in 
state 1, then the sequence of state vectors is [ 1 0 0] -+ [ 0 1 0 J -+ [ 0 0 1 ] -+ 
[ 1 0 0] -+ [ 0 1 0 J -+ • • •. That is, the system cycles repeatedly through states 1, 
2, and 3 in that order. This can also be shown by examining the powers of the transition 
matrix P. Indeed, the third power of Pis the identity matrix I, so if thf~ system has state 
vector x = [x 1 x 2 x 3 J on observation m, then it has the same state vector on observation 

m + 3(xP3 = x). 
The behavior of the Markov chain with transition matrix Tis quite different. We have 

l~ 0 ~l l g 5 

;1 l is .5 
.5 l Tl= 5 T3 = 5 T4 = .25 .5 

5 25 25 25 .5 .25 

and 

l.2000 .4000 
.40001 

T(30) = T30 .2000 .4000 .4000 

.2000 .4000 .4000 

In fact, T(m) is the same as T(30)-at least to the accuracy shown-for all m > 30. 
(See Exercise 5 for additional information on this situation.) We see that the rows of T(30) 
are all the same. One consequence of this is that for all observations numbered 30 and 
beyond, the state vector of the system is [ .2000 .4000 .4000] independent of the initial 

(a) 

Figure 3.12 

(b) 
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state. Indeed, for an initial state v~ctor [x y z], we have 

[

.2000 .4000 
.40001 

[x y z]T(m)=[x y z] .2000 .4000 .4000 

.2000 .4000 .4000 

= [ .2000x+.2000y+.2000z .4000x+.4000y+.4000z .4000x+.4000y+.4000z] 

= [ .2000(x+y+z) .4000(x+y+z) .4000(x+y+z)] 

= [ .2000 .4000 .4000 J 

for any probability vector [x y z ]. 
That is, the system "forgets" the initial state, or the early history. The same conclusion 

holds for any matrix that differs from T only in the last row and that has a third row equal 
to{ p 1 - p 0 ], 0 < p < 1. In this case, the entries in the powers will be different (they 
will depend on the value of p ), but the conclusion will be the same: As the number m of 
transitions increases, them-step transition matrix T(m) approaches a matrix with entries 
that are all positive and with rows that are all the same. I'! 

EXAMPLE 3.9 A Markov chain with state space S = {l, 2, 3, 4, 5} has the transition 
diagram shown in Figure 3.13. 

The transition matrix for this chain is 

0 0 .8 .2 0 

0 .3 0 0 .7 

P= .1 .6 .3 0 0 
0 .5 .5 .0 0 

0 0 0 0 

In this example, the probability of a direct transition from state 1 to state 2 is 0, but it 
is possible to go from state 1 to state 2 in more than one step, and in fact p 12(2) > 0. These 
facts are clear from Figure 3 .13. However, we also see that it is impossible to go from state 2 
to state 1 in any number of steps: p 21 (m) = 0 for all values of m. It is possible to go from 
state 1 to states 3 and 4, and state 1 can be reached from states 3 and 4 Thus states 1 3 
and 4 are mutually accessible from each other. The set of all states can b~ partitioned usin~ 
this "reachability" criterion, and we next turn to a systematic discussion of this idea. Ill 

.2 4 .5 

Figure 3.13 

The idea introduced in Example 3.9 is helpful in classifying Markov chains, and we now 
show how to use it systematically. Suppose that we have a Markov chain with state space 
S = {l, 2, 3, ... , N} and transition matrix P = (p;j)- We say that state j is accessible from 
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state i if there is an integer k such that p,j (k) > 0, and we say that states i and j are mutually 
accessible if state i is accessible from state j and state j is accessible from state i. This 
concept can be used to partition the state space into classes of mutually accessible states. 
Begin with state 1, and let S1 denote the set of all states that are mutually accessible from 
state 1. If S1 = S, the entire set of states, then we are finished. If not, thep_ there is a state, 
call it j, that is not in S1. Let S2 denote the set of all states that are mutually accessible with 
j. Continue in this way, and construct a collection of disjoint subsets of S whose union is 
S. Each subset consists of states that are mutually accessible, and no state belongs to more 
than one subset. 

EXAMPLE 3.10 Applying our method of partitioning the states to Example 3.9, we have 
S1 = {1, 3, 4} and S2 = {2, 5}. Note that S1 U S2 = S and S1 n S2 = 0. Now suppose 
that we form a transition matrix with the states reordered so that the states in the set S2 are 
listed first and the states in the set S1 are listed next. The order Ill which the states are listed 
within the sets S1 and S2 is unimportant, but the order must be the same in the rows and in 
the columns of the transition matrix. We have the new transition matrix 

S2 S1 ,._,__~ ~~~ 
2 5 1 3 4 

s, {: 
.3 .7 0 0 0 

0 0 0 0 

S1 {: 

0 0 0 .8 .2 

.6 0 .1 .3 0 

.5 0 0 .5 0 

where the row and column labels denote the states. II 

In Example 3.10 the transition matrix has two block matrices on the main diagonal. 
These are shown by the lines inside the transition matrix. The 2 x 2 block in the upper-left 
comer contains the transition probabilities for transitions between states in the set {2, 5}, 
and the 3 x 3 block in the lower-right comer contains the transition probabilities for the set 
of states {1, 3, 4}. There is a 2 x 3 matrix of zeros in the upper-right corner, a consequence 
of the fact that no state in the set { 1, 3, 4} is accessible from a state in the set {2, 5}. Toe 
3 x 2 matrix in the lower-left comer contains transition probabilities for transitions from 
states in the set [1, 3, 4} to states in the set {2, 5}. 

The form of the transition matrix displayed in Example 3 .10 can be achieved in the 
general case. That is, it is always possible to relabel the classes S1, S2 •••• , Sk as SJ, 
S~, ... , S~ so that the resulting transition matrix has the form 

A1 0 0 
X A2 0 

X X A3 

X X X 

± u 

0 

0 

0 
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where each of the matrices A j contains transition probabilities for transitions between states 
Ill the set Sf, j = 1, 2, ... , k. In" Example 3.10 we have SJ = S2 and S2 = S1. Entries 
in the transition matrix below these blocks, the blocks denoted by X's in the transition 
matrix, are transition probabilities between states that are not mutually accessible. Each 
"O'' entry represents a block of zeros. A transition matrix written in this form is said to be 
in canonical form. One of the advantages of writing a matrix in canonical form is that the 
matrix of m-step transition probabilities has the same form. That is, the block submatrices 
on the diagonal contain them-step transition probabilities within each class, there are zeros 
above these diagonal blocks, and the entries below the diagonal blocks are m-step transition 
probabilities between states in different classes. 

Definition 3.4 A Markov chain for which every two states are mutually accessible is 
said to be ergodic. 

We remark that the transition matrix of an ergodic Markov chain is in canonical form 
no matter how the states are ordered ( of course, the order must be the same in the rows 
and columns). 

Definition 3.5 Let j be a state. Then 

The index set of the state j, denoted by I (j), is the set of all integers m such that 
pjj(m) > 0. 
The period of state_ j, denoted by d (j), is defined to be 

(i) 0 if the index 1 (j) is empty; 
(ii) the greatest common divisor of the integers in l (j) if the index set is not empty. 

Note that the index set of a state j consists of the set of all integers m such that there 
_ is a positive probability of making transitions from state j to state j Ill m steps. 

EXAMPLE 3.11 The Markov chain with transition matrix Pin Example 3.8 has index 
sets for states 1, 2, and3 given by I(l) = {3, 6, 9, .. }, 1(2) = {3, 6, 9, ... }, and 1(3) = 
{3, 6, 9, ... }, respectively. It follows that d(l) = 3, d(2) = 3, and d(3) = 3. 

The Markov chain with transition matrix Tin Example 3.8 has index sets for states 
I, 2, and 3 given by 1 (l) = {3, 5, 6, ... }, I (2) = (2, 3, 4, ... }, and 1 (3) = (2, 3, 4, ... }, 
respectively. It follows that d(l) = 1, d(2) = 1, and d(3) = I. Note that for matrix T the 
periods of all states are the same, but the index sets are not identical. II 

EXAMPLE 3.12 Consider the Markov chain with the transition diagram given in 
Figure 3.14. 

Figure 3.14 



& 
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The transition matrix for this Markov chain, given in canonical form, is 

3 5 1 2 4 

3 . l .9 0 0 0 

5 .5 .5 0 0 0 

1 0 0 0 1 0 
2 .1 .1 0 0 .8 
4 0 0 0 0 

where the state numbers are listed to the left of the rows and above the columns. As we 
noted earlier (in Example 3.10), the order in which states 3 and 5 are listed is unimportant, 
and the order in which states 1, 2, and 4 are listed is unimportant. However, states 3 and 5 
must be listed before states 1, 2, and 4, and the states must be listed in the same order in the 
rows as in the columns. 

The index sets for states 1, 2, 3, 4, and 5 are given by I(l) = (3, 6, 9, ... }, !(2) 
(3, 6, 9, .. }, !(4) = (3, 6, 9, ... }, !(3) = (1, 2, 3, ... }, and !(5) = {1, 2, 3, ... ). It 
follows that d(l) = 3, d(2) = 3, d(4) = 3, d(3) = 1, and d(5) = 1. Ill 

We note from these examples that in each case, the periods of all states that are mutually 
accessible are the same. This is a general result. 

THEORE:.\l 3.2 If states i and j are mutually accessible, then d(i) = d(j). 

Proof Letm ancin be integers such thatpu(m) > 0 andpji(n) > 0. Then 

p;;(m + n) 2:: p;j(m)pj;(n) > 0 and 

PJJ(m + n) :,C PJ1(n)p;,(m) > 0 

and it follows that m + n E I (i) and m + n E J (j). 
Next, let k be any integer in I (j) and h any divisor of the elements in I (i). Tb.en 

Pu (m +n +k) 2:: p;j(m)pjj(k)pj 1(n) > 0, and consequently m +n + k E I (i). Therefore, 
h divides m + n + k. However, h divides m + n, so h must divide k. But k was any element 
in J(j), so h must divide every element of l(j), and because d(j) is the greatest common 
divisor of elements of I(j), h :5 d(j). Finally, because h was an arbitrary divisor of the 
elements of J (i), we have d (i) :5 d (}). 

A similar argument shows that d(j) :5 d(i), and consequently d(i) = d(j). !!I 

Definition 3.6 . A Markov chain is a regular Markov chain ifitis ergodic and the period 
of each state is L 

The transition matrix P of Example 3.8 is not the transition matrix of a regular Markov 
chain because the period of each state is 3, but the transition matrix Tis the transition matrix 
of a regular Markov chain. Indeed, for the Markov chain with matrix T, inspection of the 
transition diagram in Figure 3.12(b) shows that every two states are mutually accessible. 
Also, the index set for state 1 includes the integers 3 and 5, and consequently the period 
of state 1 is 1. As we will show later (in Theorem 3.4), the Markov chain with transition 
matrix T has the property that fof every initial state vector x0, the state vector after m 
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transitions, x(m), tends to the state vector [ .2 .4 .4]. This convergence of {x(m)} is a 
general property of regular Markov chains, and it is part of the content of Theorem. 3.4. 

Before turning to the main result of this section, Theorem 3.4, we remark that the 
definition of a regular Markov chain given in Definition 3.6 is equivalent to a condition 
on the powers of the transition matrix. This equivalent condition is frequently taken as 
the definition of a regular Markov chain. We state here a result that says our definition 
of regular implies the condition, and we provide a proof of the result in the Appendix to 
this chapter. The fact that the condition implies our definition of regular is the topic of 
Exercise 6. 

THEORElVI 3.3 If Pis the transition matrix of a regular Markov chain, then there is an 
integer r such that pn has only positive entries for all integers n > r. II 

Much of the usefulness of regular Markov chains as models rests on the fact that in 
the long run, the state vectors tend to a limit limm-+oo x(m) exists. The limit is independent 
of the initial state, it has all positive coordinates, and it can be determined by solving a 
system oflinear equations. These results are the content of Theorem 3.4, and the proofs are 
provided in the Chapter Appendix. 

THEORElVl 3.4 Let P be the transition matrix of a regular Markov chain. Then 
(i) The limit limm---+oo pm exists and is a matrix H all of whose rows are the same vectors 

(called the steady~state vector for P). The coordinates ins are all positive. 
(ii) The vectors is a probability vector that satisfies the equations= sP. 
(iii) Ifx is any probability vector that satisfies the equation x = xP, then x = s. 

,. 
We note that the convergence of the m-step transition matrices P(m) to a limit whose 

rows are all the same means that them-step state vectors x(m) converge to a limit and that 
the limit is the common row of the limit of the transition matrices. The limit of the state 
vectors is independent of the initial state vector. This result can be interpreted as meaning 
that as the number of transitions increases, the system "forgets" the initial state. The long­
term behavior of the state vector in a regular Markov chain does not depend on the initial 
state. The same conclusion need not hold for other ergodic Markov chains. 

EXAMPLE 3.13 Consider the mouse moving in a maze as described in Examples 3.3 
and 3.4, and determine the probability that the mouse will be in the dark compartment in 
the long run. 

When phrased in this way, the problem asks for the coordinate of the limiting state 
vector (if the limit exists) corresponding to the dark comparbnent. First, the Markov chain 
is regular-that is, it is ergodic and each state is of period 1-so the state vectors tend to a 
limit. Next, the limit vector can be obtained by finding a probability vector x that satisfies 
the system of equations x = xP, where Pis the transition matrix of Example 3.3: 

f 

1

.5 

.25 
P= 

0 

0 

.5 

.5 
.25 

0 

0 
.25 
.5 

.5 
I]-
.5 
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We write the system x = xP as x(I - P) = O; if we set x = [ x 1 x1 x3 x4 ], the 
system of equations becomes 

1

.5 -.5 0 

_t] (3.2) [x1 
-.25 .5 -.25 

X2 X3 x,] 0 -.25 .5 
= (0 0 0 0] 

0 0 -.5 .5 

The system of equations (3.2) has infinitely many solutions. However, we are interested 
onl)' in solutions that are probability vectors, and adding that requirement, namely 

(3.3) 

gives a unique solution. 
The system of equations that consists of the four equations (3.2) and Equation (3.3) 

consists of five equations in four variables, and a unique solution is determined by any three 
of the equations of (3.2) together with Eqation (3.3). Equation (3.3) must be retained, and 
we can select any three of the four equations in (3.2). VVe choose the first three equations 
of (3.2) and Equation (3.3). Yfe have 

.Sx1 - .25x1 

-.Sx1 + .Sx1 - .25x3 = 0 

.25x2 + .5x3 - .25x4 = 0 

Solving this system, we find 

Using tlris information, we can answer the original question. The mouse wiil be in the 
dark compartment, compartment 1, about ¼ of the time in the long run. Ii 

Remark ThE: system of equations x = xP, or x(I - P) = 0, has the unknown vector x 
on the left and the matrix on the right. This is a departure from the common notation for 
systems of equations·, and it arises from the way we define transition probabilities. It is 
common for systems of linear equations to be written with the variable x on the right-that 
is, in the form Ax = b, where A is the coefficient matrix for the system. 

II Exercises 3.3 

1. Transition matrices for ten Markov chains are shown below. In each case, write the 
transition matrix in canoriica.1: form and find the period of each state. If the chain is 
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regular, find the steady-state vector. Which chains are ergodic but not regular? 

0 0 0 0 0 0 I 0 0 .2 0 .8 0 0 

0 0 I 0 0 0 .4 0 .6 0 0 0 0 0 

a. 0 .8 0 0 .2 b. .2 .3 0 .5 0 c. 0 .8 0 0 .2 

.4 0 0 0 .6 0 .s 0 . I .4 0 0 .4 0 .6 

0 0 0 0 0 o· 0 0 0 0 0 I 0 

0 I 0 0 0 0 I 0 0 0 0 0 .2 0 .8 

0 0 0 0 0 0 0 0 I 0 0 0 0 

d. .5 0 0 .5 0 e. 0 0 0 0 f. 0 0 0 0 

0 0 0 0 I 0 0 .4 0 .6 0 I 0 0 0 

0 0 0 0 .2 0 0 .8 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 .5 0 0 .5 .8 0 0 .2 0 

g. 0 .5 0 .5 0 b. .8 0 0 .2 0 i. 0 0 0 .6 .4 

0 0 .8 0 .2 0 0 0 I 0 0 0 0 0 

I 0 0 0 0 0 0 0 0 0 .8 0 0 .2 

.5 0 .5 0 0 

.7 0 . I 0 .2 

j. .5 0 . I .4 0 

0 0 I 0 0 

0 1 0 0 0 

-2. A transition matrix for a Markov chain is shown below. Write this matrix in canonical 
form. 

0 0 I 0 0 0 0 0 

.6 .2 0 .2 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 I 0 0 0 0 

0 0 0 0 .2 .5 .3 0 

0 0 0 . I .6 0 0 .3 

0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 

3. In the setting described in Exercise 11 of Section 3.2, find the long-range probability 
of the marmot being in each of the areas. 

4, In the setting described in Exercise 13 of Section 3.2, find the long-range probability 
that the flip is made with the biased coin. 

5. Show that if P is the transition matrix for ·a Markov chain and H is a matrix -with all 
rows equal to the same probability vector w, then PH is a matrix all of whose rows are 
the vector w. 
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6. Show that if Pis the transition matrix of a Markov chain for which there is an integer r 
such that P' has only positive entries, then the Markov chain is ergodic and of period 1. 
That is, the Markov chain is regular according to Definition 3.6. 

7. Let P be the transition matrix for a Markov chain, and suppose there is an integer r 

such that all entries of P' are greater than h > 0. Show that for all integers m > r, the 
entries of pm are also greater than h. 

8. Amy is studying the feeding habits of a certain bird. She observes that the bird always 
comes the first day she makes food available. After that, however, whenever food is 
available the pattern of feeding is as follows: 

If the bird feeds one day, then it never feeds the next day. 
If the bird feeds on day n - I and does not feed on day n, then it feeds on day n + I 
with probability .75 and does not feed on day n + I with probability .25. 
If the bird feeds neither on day n - l nor· on day n, then it feeds on day n + 1 with 
probability .85 and does not feed on day n + l with probability .15. 

(a) Formulate a Markov chain model for this situation. 
(b) In the long run, on what fraction of the days does the bird feed? 

9. In the situation of Exercise 8, suppose the :first two parts of the feeding pattern remain 
the same but the third part is replaced by the following: 

• If the bird feeds neither on day n - l nor on day n, then it feeds on day n + 1 with 
probability p and does not feed on day n + l with probability 1 - p. 

(a) Formulate a Markov chain for this situation. 
(b) After an extended period of feeding, the probability that the bird feeds on a particular 

day is a function of p. Find this function and graph it for O < p < 1. 

10. ~uppose that a mouse moves in the maze shown in Figure 3.7 and that observations 
are made every 5 minutes and every time the mouse moves from one compartment 
to another. Assume that the mouse remains whe~e it is with probability .4 and that 
whenever it has a choice, it is three times as likely to move to a darker compartment as 
to a lighter one. In the long run, what is the probability that it is in the compartment 
vlith low iUumination? 

11. A computer consultant allocates her time in one-week blocks among two employers 
and vacations. She is very well paid by employer A, but she dislikes the work. She 
enjoys working for employer B, but the pay is poor. She always takes a week of 
vacation when she shifts from one employer to the other, and she never takes more 
than one week of vacation at a time. If she is on vacation, then she selects an employer 
at random, and A is selected with probability .6. If this is her first week working for 
employer A, then she will take a vacation next week with probability .2, and if she 
bas worked for employer A for two weeks (or more), then she will take a vacation 
next week with probability .5. If this is her first week working for employer B, then 
she will take a vacation next week with probability .1, and if she has worked for 
employer B for two weeks (or more), then she will take a vacation next week with 
probability .3. Suppose she starts by talci.ng a vacation and then beginning to work for 
employer A. 

(a) Formulate a Markov chain model for this situation and find the transition matrix. 
(b) In the long run, how much time does she spend on vacation? 

~,e;,J&) .: 11 ' j 
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3.4 Absorbing Chains and Applkations 
to Ergodic Chains 
In Section 3.3 we introduced a classification of Markov chains, and we considered the 
special case of chains ( ergodic and regular Markov chains) with the property that any two 
states are mutually accessible-that is, the states form a single equivalence class. Those 
chains that have at least one pair of states that are not mutually accessible are more complex, 
and the behavior of systems modeled with such chains shoWs a great deal of variety. Rather 
than conducting a systematic study of these more general chains, we turn to another special 
case: Markov chains in which one or more_ of the equivalence classes of states consist of a 
single state. As we shall see, these chains are also very useful as models. 

Definition 3.7 A state i of a Markov chain is an absorbing state if Pu = l. A Markov 
chain is said to be an absorbing Markov chain if 

1. There is at least one absorbing state, and 
2. For each nonabsorbing state j, there is an absorbing state k and a number m of steps 

such that the probability of making a transition from j to kin m steps is positive-that 
is, PJk(m) > 0. 

The definition of an absorbing state means that state i is absorbing if the ith row of the 
transition matrix has a 1 in the ith column, and then, necessarily all other entries in the ith 
row are 0. Entries in the ith row and the ith coluIDil are said to be on the main diagonal 
of the transition matrix. It is important to note that a state j with a 1 in the )th row of the 
transition matrix in a position other than on the main diagonal is not an absorbing state. 

Condition 2 of Definition 3.7 can be stated as follows: For each nonabsorbing state, it 
is possible to make a transition to some absorbing state in some number of steps. It is not 
necessary that each absorbing state be accessible from each non.absorbing state, only that 
some absorbing state be accessible. 

It is conventional to write the canonical form of the transition matrix for an absorbing 
Markov chain with the absorbing states listed first. 

EXAMPLE 3.14 Let P and T be the transition matrices for Markov: chains with five 
states. • 

0 0 1 0 0 .s 0 .3 0 .2 

0 0 0 0 .6 .2 0 .2 0 

P= 0 .8 0 0 .2 T= .3 0 .6 0 . l 

.4 0 0 0 .6 0 0 0 0 

0 0 0 1 0 .6 0 .4 0 0 

For the matrix P, state 2 is an absorbing state and all other states are nonabsorbing. Note 
that state 1 is nonabsorbing even though the first row has one entry equal to 1 and all other 
entries equal to zero; the entry 1 is not on the main diagonal. A similar comment holds for 
state 5. The absorbing state can be reached in one step from state 3 and in two or more steps 
from each of the other nonabsorbing states. Therefore, both conditions are satisfied and P 
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is the transition matrix of an absorbing Markov chain. A canonical form for the matrix P, 
with states as shown, is 

2 I 3 4 5 

2 I 0 0 0 0 

I 0 0 0 0 

3 .8 0 0 0 .2 

4 0 .4 0 0 .6 

5 0 0 0 0 

For the transition matrix T, state 4 is an absorbing state and all other states are non­
absorbing. It is possible to reach state 4 in a single step from state 2. However, there is a 
single absorbing State, and it is not possible to reach this state from state 1, 3, or j. Conse­
quently, T is not the transition matrix of an absorbing Markov chain. A canonical form for 
the matrix T, with states listed as shown, is 

4 1 3 5 2 

4 1 0 0 0 0 
0 .5 .3 .2 0 

3 0 .3 .6 . I 0 

5 0 .6 .4 0 0 
2 .2 .6 0 0 .2 

Note that the equivalence class of states { 1, 3, 5} has the property that once the system 
enters the class, it never leaves it. Ill 

Our convention is that the canonical form of the transition matrix of an absorbing 
Markov chain has states ordered so that absorbing states are listed first. That is, if there are 
N states and k of them are absorbing, then we suppose that the states have been relabeled 
so that states 1, 2, ... , k are absorbing and states k + 1, k + 2, ... , N are nonabsorbing. 
With this convention, the transition matrix P has the form 

(3.4) 

where I is a k x k identity matrix whose row and column labels correspond to absorbing 
states; 0 is a matrix with all entries equal to zero; Risa (N - k) x k matrix in which the row 
labels correspond to nonabsorbing states and the column labels correspond to absorbing 
states; the entries ofR give the probabilities of direct transitions fromnonabsorbing states to 
absorbing states; and Q is an (N -k) x (N -k) matrix whose entries give the probabilities 
of transitions between nonabsorbing states. As usual, the states must be listed in the same 
order in the rows and in the columns. When we refer to a transition matrix of an absorbing 
Markov chain being written in canonical form, we mean the form (3.4). 

One consequence of writing the transition matrix in this form is that the multistep 
transition matrices have a particularly simple form-for example, 

2 [ I O l 1-'.(2) = p = R2 Q2 
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where R2 = R + QR In general, for any integer m, m ~ 2,' 

(3.5) 

where Rm. can be computed successively as 

(3 6) 

oras 

(3.7) 

Both of these equations for Rm will be useful, as we Shall see. The matrix P(m) contains 
them-step transition probabilities, and therefore the entries of Qm are the in~step trinsition 
probabilities from one nonabsorbing state to another, and the entries of Rm are the m-step 
transition probabilities from nonabsorbing states to absorbing states. 

We note for emphasis that the state labels in the transition matrix in canonical form 
may differ from the original state labels. In situations where questions about the original 
setting are to be answered, care must be used in keeping track of the changes in state labels. 

Several properties of the matrices Qm and Rm are useful and will enable us to deve-lop 
techniques for answering many interesting questions. We begin with an examination of the 
matrix Q. 

Si.lppos·e we have an absorbing Markov chain with a transition matrix P in canonical 
form, and suppose the system begins in the nonabsorbing state i. If j is another nonabsorbing 
state, i 7". j, then the probability that the system is in state j on the first' (subsequent) 
observation is qij· The probability that it is in state j on the second observation is qij(2), 
and so on. Let E ( i, j; m) be the expected number of times the system is in state j given that 
it started in state i and continued form transitions. We develop an expression for E (i, j; m). 

For fixed states i and j, define a random variable Xk by 

X, = { 1 jf the system began in state i and is in state j after the kth transition 
,. 0 if the system began in state i and is not in state j after the kth transition 

It follows from the definition of the expected value of a random variable that E [Xk] = qij (k), 
fork = 1, 2, . , m, and • 

(3.8) 
EU, j;m) = E[Xi] + E[X2] + · · · + E[Xml 

= qu(l) + qu(2) + · · · + qu(m) 

If states i and j are the same, then the expression has an additional term as a result of the 
fact that the system began in state j: 

(3.9) 

Because i and j could be any nonabsorbing states, we have shown that the ij-entry in the 
matrix 

(3.10) 
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is the expected number of times the system is in state j given that it started in state i and 
made m transitions. Note that the matrix I in (3.10) has the same dimensions as Q. 

If the system begins ID a nonabsorbing state, there is a positive probability that it will 
reach some absorbing state, and after doing so, the system remains there for all subsequent 
observations. In fact, as the number of observations increases, the probability of finding 
the system in a nonabsorbing state becomes arbitrarily small, and the probability that the 
system is in an absorblllg state approaches 1. Indeed, the probability that the system is in a 
nonabsorbing state after m transitions becomes small sufficiently fast (as m increases) that 
the series 

(3.11) 

converges. The convergence of the series (3.11), together with the meanings of the partial 
sums (3.10) as given in (3.8) and (3.9), gives a highly useful result. 

THEORE:.\i1 3.5 If the tran.Sition matrix of an absorbing Markov chain is written in canon­
ical form as 

then the matrix I - Q h~ an inverse, and the series I + Q + Q2 + Q3 + · · -converges to 
the inverse of I - Q. 

The matrix N = (I - Q)- 1 is called the fundamental matrix of the Markov chain, 
and the i j-entry in N is the expected number of visits to nonabsorbing state j given that the 
system began ill non.absorbing state i and continued until an absorbing state was reached. 
The sum of the entries in the i th row of N is the expected number of transitions before an 
absorbing state is reached. The state labels are those of the transition matrix in canonical 
form. Ill 

The details of arguments justifying this theorem are included in the Chapter Appendix. 

EXAMPLE 3.15 An absorbing Markov chain has the transition matrix 

0 1 0 0 0 

.2 0 .1 .1 . 6 

0 0 1 0 0 

0 0 0 1 0 

.2 .2 .3 .1 .2 

(a) If the system begins in state 2, find the expected number of visits to state 5 before an 
absorbing state is reached. 

(b) If the system begins in state 2, find the expected number of transitions before an 
absorbing state is reached. 
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We begin by writing the transition.matrix in canonical forrri. 

3 4 1 2 5 
3 1 0 0 0 0 

4 0 1 0 0 0 
0 0 0 1 0 

2 .1 .1 .2 0 .6 
5 .3 .1 .2 .2 .2 

Because the question is posed in terms of the original state labels, we retain those labels 
above and to the left of the new matrix. The matrices Q, I - Q, and N are 

2 

2 l.5j 1.5 

2 

Recall that the state labels for the first, second, and third rows of Q, I - Q, and N, are 1, 2, 
and 5, respectively. 

Using the fundamental matrix N, we can answer the questions. The answer to question 
(a) is the entry in the second row and third column of N: 1.5. If the system begins in state 2, 
then the expected number of visits to state 5 before an absorbing state is reached is 1.5. 

The answer to question (b) is the sum of the entries in the second row of N: . 7 + 2 + 
1.5 = 4.2. If the system begins in state 2, then the e:Xpected number of transitions before an 
absorbing state is reached is 4.2. Of course, it may reach an absorbing state in one transition: 
There is a positive probability that it moves directly from state 2 to state 3 ( or 4 ). However, 
i~ may also take more than one transition, and we now know that the expected number 
~4.2. ■ 

EXAJVIPLE 3.16 Consider the small-group decision-making situation described in Sec­
tion 3.1, and suppose we have a group of four individuals and three alternatives. Define 
a vote change as a "shift toward consensus" if it results in one of the group composition 
shifts: 310 ➔ 400,220 ➔ 310,211 --+ 310. Assume that an individu.al who can effect a 
shift toward consensus is twice as likely to change a vote as one who cannot. Also assume 
that the probability of changing a vote to another alternative is proportional to the number 
of individuals voting for that alternative. Suppose the group initially has group composition 
211. Find the expected number of vote changes before consensus is reached . 

Denote the group compositions 400,310,220,211 as states "I, 2, 3, and,4, respectively. 
Then a Markov chain model for this situation under these assumptions has transition matrix 
( see Exercise 6) 

1 
2 
5 
0 

0 

0 

0 

4 
9 

0 
3 
5 
0 
2 
9 

0 

0 

0 
3 
9 
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This is a transition matrix for an absorbing chain, and the matrix is already written in 
canonical form. The matrix Q and the fundamental matrix N are 

The third row of N is associated with state 4, group composition 211. Therefore, the ex­
pected number of transitions before reaching state 1 is ¥ + ¥, + ~ = ¥. Ill 

The matrix N can also be used to determine the probabilities of absorption in the various 
absorbing states. To determine how, we return to Equations (3.6) and (3.7), 

and 

Suppose that the system begins in the ith nonabsorbing state. The probability that it is 
in the }th absorbing state _after the first transition is r1j. The probability that it is in the }th 
absorbing state after the second transition is the ij-entry of the matrix R2 , and in general, 
the probability that it is in the jth absorbing state after the mth transition is the ij-entry of 
the matrix Rm. 

Next, from the expression·Rm = Rm-1 + Qm-JR we see that Rm ~ Rm-1, where the 
symbol ~ means entrywise inequality. That is, each of the sequences of numbers obtained 
by fixing i and j and taking the i }-entry in the matrix Rm as the m th entry in the sequence 
is a monotone nondecreasing sequence of numbers. Moreover, each of these numbers must 
be less than or equal to 1 because the rows of the m-step transition matrix are probability 
vectors. Therefore, each of the sequences of numbers converges, and so the sequence of 
matrices {Rm} converges. Define the matrix A to be the limit of the sequence {Rr:i}: 

A= lim Rm 
m~oo 

It follows from the discussion of the mearring of the entries in Rm that the i }-entry of 
the matrix A has the following interpretation: 

If an absorbing Markov chain is initially in state i, then the probability 
that it is absorbed in nonabsorbing state j is the ij-entry of the matrix A. 

Here as elsewhere in the discussion, it is important to remember that the references to states 
i and j refer to the states of the matrix in canonical form, and references to the original 
state labels must be translated into the new state labels. 

The definition of the matrix A given above is as a limit-not particularly well suited 
for computation-and it is useful to have an alternative means of determining A. There 
is an expression for the matrix A that involves only the matrices Rand N. To determine 
the expression, we recall that Rm = R + QRm-l, and if we take the limit of both sides as 
m ➔ oo, we have 

From this we have 

,,0/M/\i-JM& 
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Finally, because the inverse of I - Q exists and is equal to N, if we multiply both sides of 
the expression (I- Q)A =Ron the left by N, we have A= NR. We summarize this result 
as a theorem. 

THEOREM 3.6 Suppose that the transition matrix of an absorbing Markov chain is 
written in canonical form as 

p = [! ~] 
and that N is the fundamental matrix for P. Then the entry in the ith row and jth column of 
the matrix A = NR is the probability that the system is absorbed in the }th absorbing state 
given that it began in the .ith non.absorbing state. ii! 

EXAMPLE 3.17 An absorbing Markov chain has the following transition matrix. 

0 0 .5 0 .5 

0 1 0 0 0 

.2 . l .2 .1 .4 

0 0 0 1 0 

.1 .1 0 .6 .2 

If the system is initially in state 3, find the probability that it is absorbed in state 4. 
We rewrite the transition matrix with the states listed in the order 2, 4, 1, 3, 5. Then the 

matrices Q, R, and N are 

[; 
5 

!J R= r~ -~j [

1.28 .80 
l.20j 

Q= 2 N= .40 1.50 1.00 

0 2 .1 .6 .16 .10 1.40 

Therefore, the matrix A = NR is 

[

.20 
.80j 

A= .25 .75 

.15 .85 

To complete the example, we need to identify the entry of A that gives ··the probability of 
absorption in state 4 given a start in state 3. The states have been relabeled in the order 2, 
4, 1, 3, 5. Therefore, state 3 corresponds to the second row of the matrix A, and state 4 
corresponds to the second colurru1. It follows that the desired probability is:,. 75. 1111 

Ill Applications of Absorbing Chains to Ergodic Chains 

One of the common uses of the ideas and techniques introduced here for absorbing chains 
is to determine useful information about ergodic chains. In many situations we can do 
so by constructing an absorbing Markov chain that is based on the ergodic chain and the 
information desired. 

Consider an ergodic chain with transition matrix P. By the definition of an ergodic 
chain, for any states i and j, there is an integer m such that the probability of making a 
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transition from state i to state j in m steps is positive. Wbat is the expected number of 
transitiolls to first reach state j given a start in state i? To answer the question, we construct 
an absorbing chain with the same states, with transition matrix P' that has the same rows 
as P with the exception of the jth row. The jth row of P' has a 1 on the main diagonal and 
zeros in all other entries. That is, we have replaced state j by an absorbing state. Transition 
probabilities among all other states are as in the original chain, and, in particular, transition 
probabilities into the new state j are the same as those into the old state j. The absorbing 

chain behaves as follows: 

• If the system begins in state j, then it remains there 
.. If the system begins in state i, i i- j, then it proceeds just as in the original ergodic system 

until it reaches state j for the :first time. Once in state j, it remains there. 

Because the original system was ergodic, it is possible to reach state j from every other 
state, and the new process satisfies the conditions for an absorbing Markov chain. 

Next, write the transition matrix for the new chain in canonical form and find the 
fundamental matrix N. By Theorem 3.5, the entries in N give the expected number of times 
the system is in each nonabsorbing state prior to reaching the absorbing state ( there is a 
single absorbing state in this case). Interpreting this in terms of the original process, we see 
that these numbers give the expected number of times the system is in each state i, i -=J:. j, 

before it first reaches state j. 

EXAMPLE 3.18 A regular Markov chain has the transition matrix 

[

~5 
.25 .5 

~5. 

.25 .5 
P= 

.25 .25 .5 

.25 0 .5 .25 

If the system is initially in state 2, find (a) the expected number of visits to state 3 
before it first reaches state 4, and (b) the expected number of transitions before it first 
reaches state 4. 

Because this is an ergodic Markov chain ( every regular chain is ergodic), we can answer 
the question by constructing an absorbing chain. We are interested in what happens before 
the system first reaches state 4, and we construct an absorbing chain by replacing state 4 
with an absorbing state. Jbe transition matrix for the new absorbing chain is 

[

~5 
.25 .5 

ti .25 .5 

.25 .25 .5 

0 0 0 

Writing this matrix in canonical form yields 

4 2 3 

4 

[t 
0 0 

.~· 2 .25 0 
.25 .25 .J 

3 .25 .25 .5 
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where the original state labels are as shown. The matrix Q and the fundamental matrix N 
are 

l.25 0 

Q = .25 .25 
.25 .25 

.5] 

.5 

.5 

The rows and columns of the matrix N correspond to states 2, 1, 3, in that order. Conse­
quently, we conclude that if the system begins in state 2, then the expected number of visits 
to state 3 before it reaches an absorbing state is 6. Thus, in the original setting the expected 
number of visits to state 3 before first reaching state 4 is 6. 

Also, if the absorbing chain begins in state 2, then the expected number of transitions 
before it is absorbed is 4 + 2 + 6 = 12. Consequently, in the original setting the expected 
number of transitions before the system first reaches state 4 is 12. Ill 

EXAMPLE 3.19 Consider the situation described in Example 3.3 of Section 3.2, in 
which a mouse moves in amaze with compartments illuminated at different levels. Assume 
that half the time the mouse is in the same compartment on successive observations and 
half the time it moves from its starting compartm~nt to an adjacent compartment bet~een 
observations. If it moves, then it is equally likely to move to any compartment open to it. If 
the mouse begins in compartment 1 (see Figure 3. 7), find the expected number of transitions 
before it first reaches compartment 4. 

The transition matrix for this system, determined in Example 3.4 of Section 3.2, is 

[

.5 

.25 
P= 

0 
0 

.5 

.5 
.25 

0 

0 
.25 
.5 
.5 

Because the task is to find the number of transitions before the system reaches state 4, 
we construct an absorbing Markov chain with state 4 replaced by an absorbing state. The 
transition matrix for the new chain is 

[

.5 

P'= ~5 

.5 

.5 
.25 

0 

0 
.25 
.5 
0 

We write the new transition matrix in canonical form, and we label the rows and columns 
with the original state labels to retain that information. We have 

4 1 2 3 

4 

[!, 
0 0 

0 • p = 1 .5 .5 0 
2 .25 .5 r ,_J 

3 0 .25 .5 
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The fundamental matrix for this chain is 

N = l; ~ ~] 
The system began in state 1, and state 1 corresponds to the first row of this fundamental 
matrix. The sum of the entries in the first row is 6, and consequently, the expected number 
of transitions before the system first reaches state 4, given that it begins in state 1, is 6. Ill 

In Examples 3.18 and 3.19 we have used the technique of creating a new Markov 
chain with an absorbing state to determine the expected number of transitions before the 
system first reaches a specified state. The same technique can be used to find the probability 
that the system visits state i before state j. For example, given an ergodic Markov chain 
and a specified starting state (different from states i and }), we. can find the probability 
that state i is visited before state j by creating a new Markov chain with states i and j 
absorbing-as in Examples· 3.18 and 3.19-and then us:ing the associated matrix A as in 
Example 3.17. 

Iii Exercises 3.4 

1. Transition matrices for six Markov chains are shown below. In each case determine 
whether the Markov chain is absorbing, and write the transition matrix in canonical 
form. If the chain is absorbing, find the fundamental matrix N. 

0 1 0 0 0 0 0 0 0 

0 0 .5 0 .5 0 .1 .3 .1 .5 

a. 0 0 1 0 0 b. 0 0 0 0 

.8 0 .2 0 0 .4 0 0 .2 .4 

0 1 0 0 0 0 0 0 .8 .2 

1 0 0 0 0 0 0 0 0 

0 0 0 .5 .5 0 0 0 0 

c. 0 0 0 0 1 d. 0 0 0 .4 .6 

.5 .5 0 0 0 0 0 0 1 0 

0 .5 .5 0 0 .5 0 .5 0 0 

0 0 0 0 0 0 0 1 0 

0 .4 0 .6 0 0 1 0 0 0 

e. .1 0 .1 0 .8 f. 1 0 0 0 0 

0 0 0 1 0 0 1 0 0 0 

0 .5 0 0 .5 .2 0 0 0 .8 

2. The transition diagram for a Markov chain is shown in Figure 3.15. 

(a) Find the transition matrix and write it in canonical form. 
(b) If the system is initially in state 2, find the expected number of transitions be.fore it 

first reaches an absorbfug state. 
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Figure 3.15 

Figure 3.16 

3. A Markov chain has the transition diagram shown in Figure 3.16. Describe the behavior 
of the Markov chain in as much detail as you can, including (to the extent possible) 
information on the long-run behavior of the state vector. To what extent does the long-
run behavior depend on the initial state vector? 

4. A transition matrix for a Markov chain is shown below. 

0 0 0 0 0 0 0 

.5 .2 0 .3 0 0 0 0 

1 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 

0 0 0 0 .3 .3 .4 0 

0 0 0 .2 .5 0 0 .3 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

(a) Write this matrix in canonical form. 
(b) Find the fundamental matrix for your canonical form. 
(c) If the process is initially in state 2, find the expected number of transitions before 

it first reaches an absorbing state. 
(d) If the process begins in state 8, find the probability that it is absorbed in state 4. 
(e) If the process begins in state 8, find the probability that it is in state 3 before it is 

absorbed. 
(f) If the process is initially in state 3, find the expected number of visits to state 1 

before it is absorbed. 
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A transition matrix for a Markov chain is shown below. 

0 .5 0 0 .5 0 0 0 0 0 

.2 .2 0 0 0 .6 0 0 0 0 

0 1 0 0 0 0 0 0 0 0 

0 0 0 I 0 0 0 0 0 0 

0 0 0 0 0 .2 .2 .6 0 0 

0 0 0 .3 0 .5 0 0 .2 0 

0 0 0 0 0 0 I 0 0 0 

0 0 0 0 0 0 .5 .2 .3 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 .4 0 0 .2 .4 

(a) Write this matrix in canonical form. 
(b) Find the fundamental matrix for your canonical form. 
(c) If the process is initially in state 5, find the expected number of transitions before 

it is absorbed. 
(d) If the process begins in state 2, find the probability that it is absorbed in state 9. 
(e) If the process begins in state 2, find the probability that it is in state 8 before it is 

absorbed. 
(f) If the process is initially in state 1, find the expected number of visits to state 5 

before it is absorbed. 
6. Consider the small-group decision-making situation described in Section 3.1, and sup­

pose we have a group of four individuals and three alternatives. Define a vote change 
as a "shift toward consensus" if it results in one of the group composition shifts: 
310 ➔ 400,220 ➔ 310,211 ➔ 310. Assume that an individual who can effect a 
shift toward consensus is twice as likely to change a vote than one who cannot. Also 
assume that the probability of changing a vote to another alternative is proportional to 
the number of individuals voting for that alternative. Suppose that the group initially 
has group compcisition 211. Formulate a Markov chain model for this situation, find 
the transitioll matrix, and find the fundamental matrix. 

7. Consider a small-group decision-making situation similar to that described in Sec­
tion 3.1 with six individuals and three alternatives. Formulate a Markov chain model 
under the following assumption: An individual who is the only person voting for an 
alternative is hvice as likely to change her vote as a person who is one of a group of two 
or more voting for an alternative. If an individual changes her vote, then the probability 
of changing to an alternative is proportional to the number of individuals voting for 
that alternative. 
(a) If the group is initially divided 3, 2, and 1, find the expected number of vote changes 

before consensus is reached. 
(b) If the group is initially divided 2, 2, and 2, find the probability that at some point 

it is divided 3, 3, and O before consensus is reached. 

8. From one academic year to another, each student at Gigantic State University moves 
on to the next class, flunks out, or remains in the same class with probabilitie.s p, q, 
and r, respectively. A student is said to be in state 1 if graduated, 2 if flunked out, 3 if a 

9. 
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senior, 4 if a junior, 5 if a sophomOre, and 6 if a freshman. Formulate a Markov chain 
model for this situation, and then answer the following: 

(a) Find the transition matrix. 
(b) If p = . 7, q = .2, and r = .1, find the fundamental matrix. 
(c) With p, q, and r as in (b), how long does a student need to be in college before 

there is a better than even chance of his or her graduating? 

A mannot lives .in the region shown in Figure 3.6. Suppose the marmot is observed 
every hour and each time it moves from one area to another. Also, suppose that it 
will be observed in the same location on successive observations with probability .2. 
If it moves, the probability of its moving to an area is proportional to the number of 
resources available to it in that area in comparison to the number of resources available 
to it in the adjoining areas. The areas bordering the pond have water in addition to the 
other resources specified, and the marmot is never actually in the pond. 

(a) Formulate a Markov chain model for this situation. 
(b) If the marmot begins at its den in the rock pile, find the expected number of 

observations before it first reaches the marsh. 
(c) If the marmot begins at its den in the rock pile, find the probability that it reaches 

the forest without going.through the marsh. 

10. Joe and Jess play a game as follows: An unfair coin with Pr[HJ = .6 is flipped 
and the result is noted. If it comes up heads, then Jess pays Joe one dollar, and if it 
comes up tails, then Joe pays Jess one dollar. If each player has money, then the coin 
is flipped again. The game ends as soon as Of!-e player has all the money. When the 
game begins, Joe has one dollar and Jess has three dollars. (See also Exercise 15 of 
Section 3.2.) 

(a) Find the expected number of plays before the game ends. 
(b) Find the probability that Jess wins the game. 

11. There are six balls, three red and three green, distributed between boxes labeled 1 and 
2, with three balls in each box. A game is played as follows: A ball is selected at random 
from each box. The ball selected from box 1 is placed in box 2, the ball selected from 
box 2 is placed in box 1, and the colors of the balls in each box are noted. Then t\vo 
more balls are selected, and play continues. When the game begins there are two green 
balls and one red ball in box 2. Find the probability that all balls'_in box 1 are green 
before all balls in box 2 are green. (See also Exercise 14 of Section· 3.2.) 

12. An unfair coin with Pr[H] = .4 is flipped repeatedly, and the result of each flip is 
noted. Find the expected number of flips before there are three conse·cutive heads for 
the first time. 

13. Each morning Reba decides how to get from her apartment to the university. She can 
walk, bike, take the bus, or ride with a friend who also has an 8:00 a.m. class. It is too 
much work to plan in advance, so each morning she makes a random choice subject to 
the following conditions: 

• If she walks on one day, then the next day she walks with probability .4; all other 
choices are equally likely. 
If she rides the bus one day, then the next day she is twice as likely to ride the bus as 
not; all other choices are equally likely. 
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If she rides with a friend one day, then she does not ride with a friend next day; all 

other choices are equally likely. 
If she rides her bike one day, then she always walks the next day. 

If she rides with a friend on Monday, find the expected number of days before she first 

rides the bus. 

Chapter Appendix: Mathematical Details 
The primary focus of this book is on model building. However, there are times when a 
slightly deeper look into the mathematical aspects of the models yields interesting and 
useful information. Thus, in this Appendix we consider in greater detail the following 
topics that were introduced but not explored in Chapter 3. 

1. The relation between Markov chains that are ergodic and of period 1 and Markov chains 
with a transition matrix P for which some power pr has only positive entries. 

2. The long-run behavior of the powers of the transition matrix of a regular Markov chain. 
This result can be used to give information on the long-run behavior of the state vector 

for a regular Markov chain. 
3. The behavior of the powers Qm, where Q is the matrix of transition probabilities among 

the nonabsorbing states in an absorbing 1\llarkov chain, and the invertibility of the matrix 

(I- Q). 

It is the details of the second and third topics that are most likely to be useful, and 
we begin with them. (The details of the proof of Theorem 3.3 are included primarily for 
completeness, although they do provide some insights into the structure of Markov chains 

with period 1.) 

Proof of Theorem 3.4 The hypothesis of the theorem is that we have a Markov chain with 
a transition matrix P and an integer r such that pr has only positive entries. We show that 

there is a probability vectors such that 

(3.12) lim pr= 
HOO 

s 
s 

s 

s 

To this end, let r be an integer such that all entries in pr are positive-say all are greater 
than h > 0. It follows that all entries of pm are greater than h for all m 2: r (Exercise 7 of 
Section 3.3). Consider the first column of Pm and denote it by p 1(m). Set 

s(m) = min{p, 1(m), i = 1, 2, ... , NJ and 

t(m) = max{p; 1 (m), i = 1, 2 .... , NJ 

Thus s(m) is the smallest probability that the system is in state 1 on the mth observation 
given a start in state 1, 2, ... , N, and t(m) is the largest such probability. The following is 
a useful fact about Markov ,chains, and it will be helpful in verifying our result. 

The sequences {s(m}Land {t(m)} are monotone increasing and monotone • 
decreasing, respectively. That is, s(m + 1) 2: s(m) and t(m + 1) .:'S t(m) 

form = 1. 2, 3, .... 
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To confirm this monotonicity, we denote by p1 the ith rOw of the matrix P, and we note 
that 

s(m + 1) = min(p, 1(m + 1), i = 1, 2, ... , NJ 

= min(p, • p 1 (m). i = 1, 2, ... NJ 

Also, since p1 is a probability vector, 

N N 

p, • p 1(m) = L P,jPJl (m) ?:. s(m) L PiJ = s(m) 
J=l J=l 

and consequently the minimum of these inner products-which is s(m + 1)-must also be 
greater than or equal to s (m). The proof that t (m + I) _::; t (m) is similar. 

Returning to the proof of the Theorem, we have s(m) :S: t(m) s: t(l) for all m, and 
csmsequently {s (m)} is an increasing sequence of real numbers that is bounded above. By 
a fundamental property of real numbers, the limit limm->-<x, s(m) exists, and we denote the 
limit bys. Also, the sequence {t(m)} is monotone decreasing and t(m) 2: s(m) 2: s(l), 
and consequently limm-+oo t(m) = t exists. Because s(m) ::; t(m) for all m, we conclude 
that s .:'S t. Ifs = t, then we have shown that the entries in the first column of {P'} all 
converge to a common limit as m increases. We show that the remaining possibility, s < t, 
is impossible. In this case, the sequences {s(m)} and {t(m)} and the limits sand tare as 
shown in Figure 3 .17. 

Now set d = t - s, and note that we are assuming d > 0. We complete the proof by 
showing that s(m) increases by more than a fixed arµount-an amount depending on hand 
d-in each sequence of r transitions. In fact, we show that if 

1. Pn(m) 2: h for 1 Si :SN andm 2: r, 
~: s(m) :S s < t S t(m) for all m, and 
3. t - s = d, 

then 

s(m + r) o. s(m) + hd form= 1,2,3. 

To verify this, we let k be an index for which s(m + r) = Pki(m + r). We let u be an 
N-vector all of whose coordinates are 1. Then form = 1, 2, .. , we have 

s(m + r) = p,(r) • p 1 (m) 

= Pk(r) • [p1(m) - s(m)u] + s(m)(p,(r). u) 

?:. s(m) + max{Pk1(r)[p 11 (m) - s(m)], j = 1, 2, .,. .J 
o. s(m) + hd 

!he second inequality results from the fact that at least one of the terms p 11 (m) - s(m) 
1s as large as d and all of the Pkj (r) are at least as large as h. To see that s < t is 

1111 1111 
O {s(m)} s {/(ml} 

Figure 3.17 
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impossible, we argue as follows: Because s(m) ----+ s as m ----+ oo, there is an integer 
m0 such that s(m) > s - hd/2 for all m > m0 . However, the above argument shows that 
s(m + r) :::_ s(m) + hd 2: s + hd/2 for all m > m0 . But this is impossible by the meaning 
of s. 

The proof that all entries in the first column of {Pr} tend to the same limit is complete. 
Also, because s (r) > 0, that limit must be positive. The same proof can be applied to entries 
in the second, ... , Nth columns of [Pr}. The limit for each column will, in general, depend 
on the column index. The verification of Equation (3.12) is complete, and this is part (i) of 
Theorem 3.4. 

For part (ii) of Theorem 3.4, we let H denote the matrix limm➔ cx:, pm, a matrix all of 
whose rows are the same vectors. We write pm+l = pmp_ Next, let m tend to infinity in 
this expression, and use Equation (3.12). Then H = HP, and the first row of each side of 
this expression gives s = sP. 

For part (iii) of Theorem 3.4, let x be a probability vector that satisfies x = xP. If we 
multiply each side of this equation on the right by the matrix P, we have xP = xPP = :xP2 , 

and because x = xP, we have x = xP2
. Continuing in this way, we have x = xPm for 

m = 2, 3, 4,. . Letting m tend to infinity and using Equation (3.12), we have 

X=X 

s 

s 

s 

s 

Finally, because xis a probability vector, the sum of the coordinates in xis 1, and conse­
quently the right-hand side of the expression just above is s. a 

Proof of Theorem 3.5 We show first that if Pis the transition matrix of an_. absorbing 
Markov chain written in canonical form, 

then the matrix I - Q is invertible. We do so by showing that the infinite series in expression 
(3.11) 

converges and that the-matrix N, defined as the sum of the series, is the inverse of I - Q. 
First we show that limm➔oo Qm = 0. Begin by noting that the multistep transition 

matrices have a particularly simple form. Indeed, as shown in Equation (3.5), we have 

where the entries in _Rm are the multistep transition probabilities from nonabsorbing states 
to absorbing states, and the entries .in Qm are multistep transition probabilities within the set 
of nonabsorbing states. Beca·usc:_ there is a positive probability of reaching an absorbing state 
from each nonabsorbing state, for each nonabsorbing state i there is an integer m depending 

f !M&¼ffltt % tttffi -f 
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on i such that the row in Rm corres_ponding to state i has a pOsitive entry. Also, because the 
columns of Rm correspond to absorbing states, once an entry in Rm is positive, it remains 
positive for all larger integers m. For each state i, let m (i) be an integer m determined as 
above, and let M = rnax{m(i) for all nonabsorbing states i}. Then each row of RM has at 
least one positive entry. Leth be the smallest positive entry in R,11. Then each row in QM 
has coordinates whose sum is no larger than 1 - h < I, and, in particular, each entry is no 
larger than 1 - h. 

It follows that each entry in QM QM = Q2M is no larger than (1 - h) 2, and, in general, 
each entry in QkM is no larger thari (1 - h)k. Next, consider the sequence {Qm}. For each 
column in Qm, the sequence of largest entries forms a monotone decreasing sequence, and 
consequently the entries in each column of Qm tend to zero, and therefore liIDm--,-cx:, Qm = 0. 

The estimates on the size of the entries in Qm derived just above enable us to show 
that the series I + Q + Q2 + Q3 + -• -converges. Indeed, for each position in the sum 
of matrices (3.11), the associated series of numbers consists of M consecutive entries each 
less than 1 - h (which is less than 1), followed by another ]VJ consecutive entries each 
less than (1 - h) 2 , followed by another M consecutive entries each less than (1 - h)3 , 

and the resulting series of numbers converges. The entries in each position in the series 
I + Q + Q2 + Q3 + - . converge, and therefore the infinite series of matrices converge. 
Denote the sum by N. Finally, 

Because limm➔CXl Q"' = 0, it follows that 

lim (I-Q)(l+Q+Q 2 +Q 3 +-··+·Qm)= lim(I-Qm+t)=l 
m---+co m---+CXJ 

and therefore, 

A similar argument shows that N(I - Q) = I. Therefore, (I - Q) is invertible and 
(I - Q)- 1 = N. " 

Proof of Theorem 33 The goal is to show that if Pis the transition matrix of an ergodic 
Markov chain with period 1, then there is a power of P all of whose entries are strictly 
positive. The proof is based on a result from elementary number the.ory concerning the 
greatest common divisor of a set of integers: • 

If dis the greatest common divisor of a set of integers {n1, n2, n3., . . , nk}, 
then there are integers x1, x 2 , x3 , ... , xk such that 

(3.13) d = n1x1 + n 2x2 + · · · + n1cxk 

Suppose that the integers n J are labeled so that all the positive x1 occur before any 
negative ones. Then d can be written as the sum N1 - N2 , where N 1 is the portion of the 
sum (3.13) that includes all positive x1, and -N 2 is the portion of the sum that includes all 
negativex 1. If the greatest common divisor is 1, then 1 = N1 -N 2 , with N1 and N2 defined 
as above. 

Set N = Ni.. Any integer n 2: N can be written as n = N + k = Ni_ + k, with k a 
nonnegative :integer. We write k = aN 2 + b, with O Sb < N2 and a equal to the integer j 
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that satisfies jN 2 _::: k < (j + l)N 2. With a and b defined in this way, we have 

n =NJ+ k =Ni+ aN2 + b =Ni+ aN 2 + b(N 1 - N2) = (N2 + a - b)N 2 + bN 1 

which gives us a representation of n as a linear combination of N1 and N2 with positive coef­
ficients. Thus, for any integer n > N, we have a representation of n as a linear combination 
of the integers {n1, n2, n3, ... , nk} \Vlth positive coefficients. 

Now, for a specific state i with period 1, let {n1, n2 , n3 , ... , nd be integers such that 
Pn(nj) > 0 for j = I, 2, .. , k, and the greatest common divisor of {n1, n2 , n3 , ... , nd 
is L Then for every sufficiently large n, there are positive integers Yj, j = 1, 2, ... , k, for 
which we have 

k k 

p;;(n) = Pii(Y1n1 + Y2n2 + .~ · + Yknk) ::': IJpu(yjnj) ::': IJPn(nj)Yj > 0 
j=l j=l 

It follows that for any states i and j and any integer m such that Pij (m) > 0, we have 
PiJ(m + n) ::': p;;(n)p;j(m) > 0 for all sufficiently large integers n. 

\Ve now have enough information to complete the proof of Theorem 3 .3. For every pair 
of states i and j, there is an integer m depending on i and j and denoted by m(i, j) such 
that PiJ(m(i, j)) > 0. By the result just above, PiJ(m(i, j) + n) > 0 for all sufficiently 
large n. Let M be the maximum of m (i, }) over all pairs i and j, let N be the maximum of 
the integers Ni. (there is a value of N2 for each state), and defi.Ile M* = M + N. Then 

PiJ(M') = p 1;(m(i, j) + M' - m(i, j)) 2: Pii(m(i, j))pii(M' - m(i, j)). 

Now PiJ (m(i, })) > 0 and M*--m(i, j) = N + [M -m(i, })] > N, and consequently 
both factors on the right-hand side are positive. This shows that p;j (M*) > 0 for all states 
i andj. iii! 

CHAPTER 4 

Simulation Models 

4.0 Introduction 

In this chapter we discuss in more detail the computer implementation of models used to 
study activities or processes by imitating or simulating their actual behavior. We introduced 
the broad ideas and provided examples in Section 2.6. In this chapter we continue the 
discussion in greater depth. Our view, however, is that simulation is just one of a number 
of modeling techniques, and therefore we consider only the basic aspects. 

Simulation models are \Vldely used and their popularity is increasing. Many systems 
of current interest are large and complex, and simulation models may be a very effective 
way to gain insight. Indeed, software that facilitates simulation has become increasingly 
common, and the cost of computing continues to decline. Consequently, simulation models 
have become a very attractive option as an aid to ui:tderstanding complex systems. Because 
tb,e development of simulation models for complex systems is a time-consuming task, a 
number of special-purpose simulation languages have been created to reduce the effort. 
Often these languages are designed to handle a relatively restricted class of situations, but 
to do so in a convenient and efficient way. Our goal is to illustrate the fundamental concepts, 
so we use only widely available computer software: the scientific software package MAPLE 
and the spreadsheet EXCEL; there are many alternatives to both. 

4.1 The Simulation Process 
The simulation process is intended to help us understand the behavior of a System by using 
a computer to imitate its behavior or certain aspects of its behavior. Although the term 
simulation is sometimes used to refer to the use of a computer in models for completely 
deterministic situations-that is, models in which a specific set of inputs always yields the 
same set of outputs-we will use the term numerical model or computational model for 
such situations. We will reserve the term simulation model for situations in which some of 
the quantities or aspects of the system being studied are described in probabilistic terms. In 
such situations, the output data are themselves random, and consequently we can obtain only 
estimates of the actual behavior of the system. For instance, some of the population models 
studied in Section 2.2 are numerical models in the sense that the model is deterministic 
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